
Automating Test Reuse for Highly Configurable Software
An Experiment

Stefan Fischer
Institute for Software Systems Engineering

Johannes Kepler University

Linz, Austria

stefan.fischer@jku.at

Rudolf Ramler
Software Competence Center Hagenberg GmbH

Hagenberg, Austria

rudolf.ramler@scch.at

Lukas Linsbauer
Institute for Software Systems Engineering

Johannes Kepler University

Linz, Austria

lukas.linsbauer@jku.at

Alexander Egyed
Institute for Software Systems Engineering

Johannes Kepler University

Linz, Austria

alexander.egyed@jku.at

ABSTRACT

Dealing with highly configurable systems is generally very complex.

Hundreds of different analysis techniques have been conceived to

deal with different aspects of configurable systems. One large focal

point is the testing of configurable software. This is challenging

due to the large number of possible configurations and because

tests themselves are rarely configurable and instead built for spe-

cific configurations. Existing tests can usually not be reused on

other configurations. Therefore, tests need to be adapted for the

specific configuration they are supposed to test. In this paper we

report on an experiment about reusing tests in a configurable sys-

tem. We used manually developed tests for specific configurations

of Bugzilla and investigated which of them could be reused for

other configurations. Moreover, we automatically generated new

test variants (by automatically reusing from existing ones) for com-

binations of previous configurations. Our results showed that we

can directly reuse some tests for configurations which they were

not intended for. Nonetheless, our automatically generated test

variants generally yielded better results. When applying original

tests to new configurations we found an average success rate for

the tests of 81,84%. In contrast, our generated test variants achieved

an average success rate of 98,72%. This is an increase of 16,88%.

CCS CONCEPTS

· Software and its engineering → Software product lines;

Software testing and debugging.

KEYWORDS

variability, configurable software, clone-and-own, reuse, testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC ’19, September 9ś13, 2019, Paris, France

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3336305

ACM Reference Format:

Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed. 2019.

Automating Test Reuse for Highly Configurable Software: An Experiment.

In 23rd International Systems and Software Product Line Conference - Volume

A (SPLC ’19), September 9ś13, 2019, Paris, France. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3336294.3336305

1 INTRODUCTION

Companies develop configurable software systems to deal with the

growing demand for custom tailored software products. A range of

techniques have been devised for the development andmaintenance

of configurable software. Many large scale configurable systems,

with thousands of configuration options, have been engineered. For

instance, the Linux kernel has several thousands of configuration

options, like supporting a wide range of different hardware from

hand held devices (e.g. Android phones) to large supercomputer

clusters [2].

A large number of configuration options means that there are

often myriads of configurations that can be derived from the system.

This variability is challenging for many tasks when working with

configurable software. Not only do all the configuration options

have to be considered in the development process, but also potential

interactions between them. Broadly speaking, an interaction occurs

when one configuration option changes the behavior associated

with other options. When testing a configurable system, combi-

nations of configuration options are of particular interest, as they

may reveal undesired interactions. However, not all combinations

can be tested, because the number of possible combinations usually

increases exponentially with every configuration option. Krueger

et al. discussed that already a system with more than 216 Boolean,

non-constrained configuration options has a number of possible

configurations comparable to the number of estimated atoms in the

universe [11]. To handle this combinatorial explosion, commonly

only subsets of possible configurations are selected for testing. For

instance, Combinatorial Interaction Testing (CIT) selects configura-

tions that cover combinations of n configuration options (therefore,

often referred to as n-wise testing). A problem that still exists is that

the tests for the system are themselves often not configurable [14].

In odrder to test different configurations, the existing tests must be

adapted for each specific configuration.

https://doi.org/10.1145/3336294.3336305
https://doi.org/10.1145/3336294.3336305


SPLC ’19, September 9ś13, 2019, Paris, France Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

The goal of this work is to investigate the possibility of reusing

existing tests related to one configuration for another configura-

tion in the context of a highly configurable software system. Our

experiments are based on the widely used bug tracking system

Bugzilla, which provides a large number of configuration options

and can be adjusted to user needs in various ways. We implemented

test variants for several different Bugzilla configurations by copy-

ing and adapting the tests from previous configurations. Such a

clone-and-own approach is often used in practice for developing

and extending related software systems [7]. Moreover, we used an

automated reuse approach to generate new test variants for addi-

tional configurations that combine previously tested configuration

options.

Automating the reuse of tests for configurable software can

substantially reduce the effort for testing and it supports a more

rigorous testing process. Krüger et al. discussed the need for auto-

mated test refactoring for the adoption of more systematic reuse

approaches [12]. Thus, we applied ECCO (Extraction and Compo-

sition for Clone-and-Own) for automatically generating new tests

from existing ones written for other configurations. ECCO is an

approach for enhancing clone-and-own to systematically develop

and maintain software variants [9]. We were able to show that the

reuse support of ECCO is effective for automatically generating

new test variants for the pairwise combination of configuration

options. The approach produced 3565 executable test cases, which

yielded better results than simply reusing the tests of the combined

configurations in 66.34% of the new pairwise configurations and it

was equally successful in 24.75%.

The remainder of this paper is structured as follows. Section 2 in-

troduces the relevant background and Section 3 discusses the prob-

lems we aim to address and motivates our experiments. Section 4

presents the system of our study and the experiments performed

with it, as well as the metrics recorded during the experiments.

Sections 5 and 6 summarize the results of our experiments and dis-

cuss their implications on our research questions. Finally, Section 7

describes related work to our study and Section 8 summarizes the

conclusions of our study and sketches our future work.

2 BACKGROUND

In this section, we discuss some of the necessary background for

our work. We describe highly configurable systems, an automatic

approach for reuse, and existing approaches for testing configurable

software systems.

2.1 Highly Configurable Systems

Systems frequently offer configuration options to allow users to

tailor them to their needs and preferences. These configuration

options (a.k.a. features [1]) have different types of how they are

expressed (e.g. Boolean options, Integers, ...) and can be realized

in different forms in the system. For instance, using preprocessor

directives (e.g. #IFDEFs), conditional execution (e.g. simple IFs), or

build systems [14]. A large number of highly configurable systems

are being maintained, ranging from just a few to thousands of

configuration options (e.g. Linux kernel).

A wealth of research on highly configurable software is available

in the field of Software Product Line Engineering (SPLE). Software

product lines (SPLs) are families of related software systems distin-

guished by the set of configuration options (i.e. features) each one

provides. SPLs are highly structured and they follow strict processes

to deal with the contained variability. The available configuration

options and dependencies between them are commonly expressed

in a variability model.

Because SPLs typically entail a high upfront investment many

practitioners use a more ad hoc approach of copying and adapting

previous variants, known as clone-and-own [7]. However, this leads

to a set of similar variants that have to be maintained separately,

which becomes more difficult, the more variants being developed.

2.2 ECCO

In an effort to mitigate the problems associated with clone-and-own,

we developed an approach called ECCO (Extraction and Composi-

tion for Clone-and-Own) [9, 10]. Its purpose is to support reuse in a

clone-and-own context by analyzing commonalities and differences

in existing variants and, subsequently, support the creation of new

variants by automatically reusing relevant parts from existing vari-

ants. In a first step it extracts traceability information (i.e. mappings

between configuration options and their implementation). The sec-

ond step then allows to compose new variants by combining the

relevant parts of the implementation using the extracted mapping

information. In this paper we apply ECCO specifically for creating

new variants of tests. First, we extract mappings between the differ-

ent parts of the test source code and the configuration options that

are tested by the analyzed tests. The test source code is analyzed

at the level of the Abstract Syntax Tree (AST), which means that

each individual element of a source code statement is considered.

Then we compose new test variants by simply selecting a set of

configuration options that shall be tested. The Abstract Syntax Tree

(AST) of the new tests is automatically created as a combination

of the relevant parts of the ASTs of the existing tests. Finally, the

developer can manually adjust or extend the newly created variants

if necessary, e.g., when the combination of existing source code

parts is not sufficient to fully express new behavior of the system

due to interactions or conflicts between configuration options. In

context of testing, the newly generated test will likely fail when

executed for the first time, indicating an unexpected and potentially

erroneous interaction between configuration options.

Figure 1 shows the simplified ECCO workflow. Input is a set of

existing variants. Each variant consists of its implementation and

the information of which configuration options it encompasses.

The extraction operation analyzes commonalities and differences

in configuration options and the implementation of the variants,

computes traceability information, and stores it in a repository.

The composition operation then uses the information stored in the

repository to compute the implementation of new variants given a

set of desired configuration options.

2.3 Configurable Software Testing

There exists a substantial amount of research focusing on testing

configurable software [4ś6, 8]. A common thread among this re-

search is the task to select variants for testing that are more likely

to contain faulty interactions causing failures. The most prominent

approaches use Combinatorial Interaction Testing (CIT) [13]. CIT



Automating Test Reuse for Highly Configurable Software SPLC ’19, September 9ś13, 2019, Paris, France

VariantVariantVariant
Extraction New

VariantComposition

Configuration Options 
& Implementation Configuration Options

Implementation

ECCO A

B C

D

A

C

D

A

B
A

B

C

D
C0,C1 C0,C2

C0,C1,C2

Figure 1: Simplified ECCO Workflow

techniques applied to configurable systems commonly use a variabil-

ity model from which they calculate all valid t-wise configuration-

option-combinations and, subsequently, covering arrays of a strength

t. For instance, for t = 2, also known as pairwise testing, a CIT al-

gorithm has to find a set of variants (i.e. covering array) to cover

all combinations of two configuration option values that can be

selected and which are allowed by the variability model.

3 PROBLEM STATEMENT

As discussed above, to test a highly configurable software system

a subset of configurations has to be selected for testing. To test

different configurations the tests also have to be adapted to these

configurations. One solution to achieve this would be to develop

the tests also as configurable software, so they can be automatically

adjusted to the configurations they are supposed to test. However,

in practice this is often not the case [14] as developing such tests

would substantially raise development costs. Therefore, tests for

a new configuration are usually created via cloning and manually

adapting existing tests developed previously for a similar configura-

tion. Following this process, practitioners end up with a set of test

variants (i.e., partial clones), each to test a specific configuration.

However, covering all possible interactions that can occur in

a configurable system is typically infeasible with such a manual

process. Even only testing all pairwise combinations can quickly

become infeasible due to combinatorics, when the tests have to

be manually adapted for each configuration - not to mention the

fact that these tests also have to be maintained throughout the

evolution of the system [17]. In practice, testing is therefore usu-

ally focused on individual configurations (configuration options in

isolation) and a few selected combinations. The limited coverage

of combinations can lead to missing critical erroneous interactions

between different configuration options. An approach to automati-

cally generate tests for new configurations would help to reduce

the effort of implementing and maintaining tests for a wide range

of combinations and to find new interaction bugs. Given that the

number of combinations is typically growing exponentially, the

potential gain from using an automated approach can be huge in

many projects.

Moreover, companies often use a clone-and-own process for

developing new variants for their configurable system [7]. These

variants are tested individually before deployment to the customers.

Tests are reused from previous variants and are also adapted in a

clone-and-own manner [12]. There are many benefits for migrating

from clone-and-own to a more systematic approach on a reusable

platform, like reduction in maintenance costs. A barrier preventing

such a migration is often the fear of introducing new bugs during

the migration [12]. Being able to automatically reuse tests from

previous variants could help with this issue and it would allow to

ensure that the system still behaves as expected after migration.

These practical problems motivated us to investigate systematic

and automated reuse for software tests of configurable systems and

to perform the experiments discussed in this paper. In particular

we aim to answer the following research questions:

RQ1: Towhat degree can tests from configurations be reused

directly?We analyze howmany of the existing tests can be directly

applied for testing other configurations and in how many cases

modifications are required. Hence, this question allows us to assess

the manual effort that would be required to adapt existing tests for

different configurations.

RQ2: Towhat degree canwe automatically generate test suites

for new configurations from existing tests? The main goal of

our experiments is to determine whether we can automatically

compose test variants for new, previously untested configurations

by reusing parts of the source code of existing tests. Therefore

we investigate the use of the ECCO tool support for automatically

composing such tests.

4 EXPERIMENT DESIGN

In this section, we discuss the methodology of our experiment. We

start with explaining the system under test and the existing tests

we have developed, followed by the setup used for our experiments,

and the metrics measured during these experiments.

4.1 System Under Test

The configurable system we used in our experiments is the widely

used, open-source bug tracker Bugzilla. Specifically, we used the

Virtual Bugzilla Server (version 3.4) provided by ALMWorks1. This

is an virtual machine image containing a ready-to-use setup of

the Bugzilla 3.4 Web application, an Apache Web server, and a

MySQL database running on Debian Linux. Bugzilla is a Web-based

application, so the front-end (user interface) of the Bugzilla server

is accessed using a Web browser.

We initially implemented a suite of 34 automated test cases exer-

cising the main functionality of Bugzilla via the Web front-end (e.g.,

submitting a bug report, searching and updating a report, changing

the bug status). The tests are written in Java and use Selenium2

to control the Chrome Web browser to interact with Bugzilla. The

tests run on the default configuration of Bugzilla. Subsequently,

1https://almworks.com/archive/vbs
2https://www.seleniumhq.org/

https://almworks.com/archive/vbs
https://www.seleniumhq.org/


SPLC ’19, September 9ś13, 2019, Paris, France Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

we identified a range of different configuration options that can

be used to change the default behavior of Bugzilla. We selected a

diverse set of fifteen different options resulting in configuration

changes that are directly observable in the Web front-end, in the

navigation structure, or in the bug tracking workflow of Bugzilla.

Thus, these options can be expected to impact our existing set of

tests and make adaptations necessary in order to run them after

a configuration change. Furthermore, some of the configuration

options are expected to result in conflicts when activated in combi-

nation. We created tests for each of the additional configurations by

manually performing clone-and-own starting from the test cases

for the default configuration.

Config Tests Description

C00 34 Default configuration of Bugzilla
C01 36 Enable status white board field for optional comments
C02 34 Disable priority selection on bug report submission
C03 33 Allow using empty values in bug search form
C04 35 Add an additional product to organize bug reports
C05 36 Add an additional component to a product
C06 36 Add an additional version to a product
C07 34 Configure bug status workflow to a minimum set of states
C08 34 Configure bug status workflow to a different entry state
C09 35 Require descriptions on creating a new bug entry
C10 34 Require descriptions on all bug status changes
C11 35 Require resolution description on setting a bug to resolved
C12 35 Enforce a comment when a bug is marked as duplicate
C13 35 Enforce dependencies to be resolved before bug can be fixed
C14 34 Set the default bug status of duplicates to verified
C15 34 Set the default bug status of duplicates to closed

Table 1: Configurations and Number of Tests

We list the 16 configurations of Bugzilla used in our experi-

ments in Table 1 along with the number of test cases developed

in each of the variants and a description of the impact of chang-

ing a specific configuration option. The changes in the different

configurations range from simply adding an optional comment

field (C01) to completely changing the bug workflow and the states

that can be assigned to a bug (C07 and C08). Some of these con-

figuration options are related to the same functionality and we

therefore expect conflicts if they are set simultaneously with one

another. For instance, C07 and C08 both change the bug workflow

and therefore they cannot both be configured at the same time.

Configuration C12 can only be used when duplicates are allowed.

A conflicting dependency also exists between configurations C14

and C15, because they both change the default status of duplicates

to different states and therefore, they cannot be set simultaneously.

Furthermore, we might run into another conflict if any of the two

is activated together with C07, because they change a bug status

that might no longer be allowed in C07.

Each of the test suite variants that were developed to test a

specific configuration consists of a (1) Test Set Up that configures

the Bugzilla server accordingly (i.e. activates the configuration and

resets it to the default configuration after the tests were executed),

(2) Test Cases that exercise the functionality of Bugzilla in various

ways, and (3) Page Objects that use Selenium to access Bugzilla

through its Web front-end. Figure 2 sketches the test execution

cycle of one of the test variants targeting a specific configuration.

All of the parts are implemented in Java and each test variant is an

independent Maven3 project that has been created by cloning and

modifying the tests for the default configuration (C00). We use the

tool Maven Invoker4 to automatically execute all test variants. As

depicted in Figure 2, we first call the Test Set Up to set Bugzilla to the

desired configuration. Next, we use the JUnit test runner to execute

the Test Cases, which call methods provided by the Page Objects.

These are Java objects that use Selenium to interact with the Web

pages realizing the Bugzilla front-end and to verify the expected

outcome. Finally, we use the Test Set Up to reset the configuration

back to its default in order to provide a clean basis for running

other test variants using the same process.

Test Set

Up

Maven 
Invoker SetUp TestClass 1 TestClass n PageObject 1 PageObject n Bugzilla

Java:setUp

JUnit:test 1

Selenium

Selenium

Selenium

Selenium

Java:reset Selenium

Maven Test Cases Page Objects Bugzilla

JUnit:test n

JUnit:test 2

… …

Figure 2: Sequence of Executing a Test Variant

4.2 Composing New Test Variants

We applied ECCO to create new test variants from existing tests. We

generated the tests for new configurations that are combinations of

configuration options covered individually by the existing tests. We

did not adjust ECCO for this experiment. It was used as described

in Section 2.2 on the existing test variants along with the covered

configuration options as input.

Figure 3 shows code snippets of three different manually devel-

oped test variants, testing the configurations C00, C01, and C06

respectively. The configuration C00 is the variant testing the de-

fault configuration of Bugzilla. Configuration C01 adds an optional

text field for commenting on the status of a bug, that is accessed in

Line 24 in test variant T01. Although test T00 was written for the de-

fault configuration C00 it can still run successfully on C01, because

the text field is optional and not accessed by the test. Test T01 can

not successfully run on configuration C00 and will cause an error

in Line 24, since the text field does not exist in this configuration.

Configuration C06 adds another product version to the Bugzilla

default configuration, which then overrides the default selection

of the version labeled unspecified. All test variants assert that the

version of the created bug entry is unspecified (Lines 9, 22, and 38

respectively). However, if we execute the tests T00 or T01 on con-

figuration C06 we would get a failure from this assertion, because

the default version has been overridden and the new version is

selected instead. The test variant T06 was therefore adapted by

adding Line 33 that explicitly sets the version to unspecified.

3https://maven.apache.org/
4https://maven.apache.org/shared/maven-invoker/

https://maven.apache.org/
https://maven.apache.org/shared/maven-invoker/


Automating Test Reuse for Highly Configurable Software SPLC ’19, September 9ś13, 2019, Paris, France

Variant T00 (BASE):

1 class CreateNewBugTest {

2 public void testCreateBugDefaultValues () {

3 ...

4 createBug.setSummary(summary);

5 BugCreatedPage created=createBug.commitBug ();

6 ...

7 EditBugPage editBug=created.gotoCreatedBugPage ();

8 assertEquals(summary , editBug.getSummary ());

9 assertEquals("unspecified",editBug.getVersion ());

10 ...

11 }

12 }

Variant T01 (BASE + USESTATUSWHITEBOARD):

14 class CreateNewBugTest {

15 public void testCreateBugDefaultValues () {

16 ...

17 createBug.setSummary(summary);

18 BugCreatedPage created=createBug.commitBug ();

19 ...

20 EditBugPage editBug=created.gotoCreatedBugPage ();

21 assertEquals(summary , editBug.getSummary ());

22 assertEquals("unspecified",editBug.getVersion ());

23 ...

24 assertEquals("",editBug.getStatusWhiteboard ());

25 ...

26 }

27 }

Variant T06 (BASE + ADDVERSION):

29 class CreateNewBugTest {

30 public void testCreateBugDefaultValues () {

31 ...

32 createBug.setSummary(summary);

33 createBug.setVersion("unspecified");

34 BugCreatedPage created=createBug.commitBug ();

35 ...

36 EditBugPage editBug=created.gotoCreatedBugPage ();

37 assertEquals(summary , editBug.getSummary ());

38 assertEquals("unspecified",editBug.getVersion ());

39 ...

40 }

41 }

Figure 3: Source Code Snippets of Bugzilla Tests

We used the test variant for the default configuration C00 and the

different variants created for the additional fifteen configurations

C01-C15 as input for ECCO. Furthermore, we also provided the

configuration option tested by each of the variants to allow ECCO

to establish links between configuration options and the related

source code parts of the tests. Based on the extracted knowledge,

ECCO generates the source code of the tests for a new configuration,

which is specified in terms of the activated configuration options.

Figure 4 shows code snippets of a test generated with ECCO

for the combination of the configurations C01 and C06. This new

test variant contains the code for the optional status text field in

Line 53 and for setting the added bug version in Line 46. Therefore,

this new test can be executed on the combined configuration with

USESTATUSWHITEBOARD and ADDVERSION activated. In contrast, the

tests T00 and T01 would fail on this combination due to the change

caused by the added version. Test T06 would still pass, but it does

not assert that the optional status text field has been activated. The

test variant generated with ECCO also executes the assertion for

the optional text field and therefore achieves higher code coverage.

Variant T01-06 (BASE + USESTATUSWHITEBOARD + ADDVERSION):

42 class CreateNewBugTest {

43 public void testCreateBugDefaultValues () {

44 ...

45 createBug.setSummary(summary);

46 createBug.setVersion("unspecified");

47 BugCreatedPage created=createBug.commitBug ();

48 ...

49 EditBugPage editBug=created.gotoCreatedBugPage ();

50 assertEquals(summary , editBug.getSummary ());

51 assertEquals("unspecified", editBug.getVersion ());

52 ...

53 assertEquals("",editBug.getStatusWhiteboard ());

54 ...

55 }

56 }

Figure 4: Source Code Snippets of Composed Test

4.3 Experiment Execution

We performed several different experiments to answer our research

questions stated above.

Direct reuse of existing tests on other configurations: To an-

swer RQ1, we investigated how many of the existing tests of the

original variants could be direly reused for testing other configura-

tions.We first executed all tests on the individual configuration they

were created for to ensure they work correctly. Then we executed

each of the tests also on all other configurations to find out how

much the individual configurations influence the test runs. From

the results we analyzed to what degree the tests are influenced by

the different configurations.

Direct reuse of existing tests onnewpairwise configurations:

We created new configurations by building pairwise combinations

of existing configurations, i.e., by activating the Bugzill options

related to two individual configurations simultaneously. Then, we

executed the tests for each of the two configurations to evaluate the

reuse of the existing tests on these new pairwise configurations. To

activate the configuration options in Bugzilla, we used the existing

setup code from both of the involved test variants and executed

them in sequence, so both options would be set. In order to mitigate

the possibility that the setup of the first configuration influences the

other one (e.g., one masking the other and corrupting the outcome),

we performed the experiment twice and changed the order in which

the two setups were executed. This allowed us to asses to what

degree the original variants can be directly reused on pairwise

configurations.

Automated reuse by composing new tests: To address RQ2, we

also executed newly composed tests on the pairwise combinations

of existing configurations. We applied ECCO to generate new test

variants for all possible combinations of any two existing configu-

rations. The goal of this experiment was to assess the usefulness

of automatically composing new tests from existing tests for new

configurations. Figure 5 illustrates the experiment on pairwise con-

figurations for the example of testing configuration C01-06. The

pairwise configuration C01-06 represents the combination of the

individual configurations C01 and C06. Instead of testing this new

configuration with the exsiting tests T01 (developed for the config-

uration C01) and T06 (developed for C06), Please note that ECCO is



SPLC ’19, September 9ś13, 2019, Paris, France Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

deterministic and therefore we only had to perform this experiment

once. Variant T01Variant T06Variant T01-06Direct reuse of 
existing tests on 

new pairwise 
configurations

Automated reuse 
by composing 

new tests

Bugzilla Configuration C01-06
Figure 5: Example Experiments on Pairwise Configurations

Automatic reuse of setup code: We can use ECCO not only to

generate test code for the new configurations but also for generat-

ing the setup and reset code to configure Bugzilla accordingly. In

the previous experiment, we executed the setup of each individual

configuration in sequence to activate all required configuration

options. To investigate if the ECCO approach is also applicable for

composing setup code, we repeated the previous experiment, using

the ECCO generated setup and reset code instead of the original

ones. We compared the results to those from the previous experi-

ment in order to assess how well the ECCO setup code worked.

All test variants used in the experiments, original ones as well

as those generated with ECCO, were realized as separate Maven

projects. We used the Maven Surefire Plugin5 to generate test re-

ports and the JaCoCo6 Maven Plugin to record code coverage.

4.4 Metrics

Next, we will discuss the metrics we recorded for our experiments.

From the test reports we can extract the first set of metrics.

Test Result Metrics.

• Number of Test CasesTests . The number of test cases that

exists for a variant.

• Number of Successful Tests Succ . The number of test

cases that were executed in a variant without any problem

(i.e. no failures or errors).

• Test Success Rate SuccessRate . The rate in which test cases

could be executed without problem (i.e. no failures or errors).

SuccessRate = Succ/Tests

Furthermore, as the existing tests may still pass but yield less

coverage than the composed ones, we also analyze and compare

the coverage achieved by the tests. However, we were not able

to measure the actual coverage of the Bugzilla code. Instead, we

measured the coverage of the Java code for the page objects of

the executed variants. Our reasoning for doing this was that each

page object represents an actual page of Bugzilla, and the code

that was executed uses parts of the page. Therefore, we argue that

coverage of the page object should logically be correlated with

the coverage of Bugzilla itself. The coverage report from JaCoCo

includes lines, methods, and classes that have been executed during

5https://maven.apache.org/surefire/maven-surefire-plugin/
6https://www.eclemma.org/jacoco/

testing. However, the line coverage metric is influenced by the

formatting (i.e. a statement can be in one line or split into several

lines). Because ECCO may format some statements different than

they were in the original variants we computed statement coverage

instead, which allows a better comparison. We did this by iterating

over the Abstract Syntax Tree (AST) (generated with the Eclipse

Java development tools (JDT)) and checking the JaCoCo report for

each statement if the corresponding line was executed. Moreover,

from this AST we computed the number of statements that exist in

each variant and over all variants combined.

Coverage Metrics.

• Number of Statements FullCount . The number of unique

statements that exist combined over all variants.

• Number of executed Statements VarCovered . The num-

ber of statements that have been executed when testing a

variant.

• Statement Coverage on all code OverallCoveraдe . Cov-

erage of statements in an individual variant in relation to all

statements of all variants.

OverallCoveraдe = VarCovered/FullCount

Therefore, OverallCoveraдe is the proportion of Bugzilla

that we can access with our page objects and which is exe-

cuted during testing.

5 RESULTS

In this section, we present the results of our experiments.

5.1 Direct Reuse of Existing Tests on Other
Configurations

First, we executed all test variants on all configurations. In Figure 6

we depict the SuccessRate at which test cases from existing test

suite variants (columns) could be applied to existing configurations

(rows). As is expected, the diagonal is filled with the values 1.0,

meaning 100% of the test cases could be applied to the configura-

tions they were developed for. Moreover, some variants can apply

all their test cases to some other configurations, for example tests

from C10 (i.e. T10) can be applied to six configurations besides C10

itself. Most of the variants can run a fairly high number of their

test cases on other configurations (between 70% and 90%). The ex-

ception for this are the configurations C04 and C05, on which only

the most basic tests from other configurations could be executed.

Similarly, the test suite for configuration C04 (i.e. T04) could not

run many of its tests on other configurations than C04 itself.

5.2 Direct Reuse of Existing Tests on New
Pairwise Configurations

Next, we executed the tests on pairwise configurations. There are

105 possible pairs in total (
(15
2

)

= 105). The order in which we

executed the setup made no difference for the results of most of

the configurations. For configuration C14-15 we found a difference

in the SuccessRate depending on the order, due to the expected

conflict between the two configurations. The SuccessRates did an

exact flip with the order in which the configurations was set up and

we included the results, because there was effectively no difference

in the numbers. Furthermore, we also discovered that the combined

https://maven.apache.org/surefire/maven-surefire-plugin/
https://www.eclemma.org/jacoco/


Automating Test Reuse for Highly Configurable Software SPLC ’19, September 9ś13, 2019, Paris, FranceT00 T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12 T13 T14 T15C00  1,00 0,81 1,00 0,84 0,06 0,89 0,89 0,85 0,91 0,97 1,00 0,89 0,97 0,97 0,97 0,97C01  1,00 1,00 1,00 0,84 0,06 0,89 0,89 0,85 0,91 0,97 1,00 0,89 0,97 0,97 0,97 0,97C02  0,97 0,78 1,00 0,81 0,06 0,89 0,89 0,82 0,91 0,94 0,97 0,86 0,94 0,94 0,94 0,94C03  0,94 0,75 0,94 1,00 0,06 0,83 0,83 0,79 0,85 0,91 0,94 0,83 0,91 0,91 0,91 0,91C04  0,06 0,06 0,06 0,06 1,00 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,06C05  0,12 0,11 0,12 0,12 0,06 1,00 0,11 0,12 0,12 0,11 0,12 0,11 0,11 0,11 0,12 0,12C06  0,94 0,78 0,94 0,78 0,06 0,89 1,00 0,79 0,91 0,91 0,94 0,83 0,91 0,91 0,91 0,91C07  0,74 0,67 0,74 0,69 0,06 0,67 0,67 1,00 0,71 0,71 0,74 0,71 0,71 0,74 0,71 0,71C08  0,82 0,69 0,82 0,69 0,06 0,78 0,81 0,85 1,00 0,80 0,82 0,80 0,80 0,80 0,79 0,79C09  0,97 0,81 0,97 0,81 0,06 0,89 0,89 0,82 0,91 1,00 1,00 0,86 0,94 0,94 0,94 0,94C10  0,74 0,69 0,74 0,69 0,06 0,67 0,67 0,74 0,71 0,77 1,00 0,69 0,74 0,71 0,74 0,74C11  0,94 0,75 0,94 0,78 0,06 0,83 0,83 0,85 0,85 0,91 1,00 1,00 0,91 0,94 0,91 0,91C12  0,97 0,78 0,97 0,81 0,06 0,86 0,86 0,82 0,88 0,94 1,00 0,86 1,00 0,94 0,97 0,97C13  1,00 0,81 1,00 0,84 0,06 0,89 0,89 0,85 0,91 0,97 1,00 0,89 0,97 1,00 0,97 0,97C14  0,97 0,78 0,97 0,81 0,06 0,86 0,86 0,82 0,88 0,94 0,97 0,86 0,94 0,94 1,00 0,97C15  0,97 0,78 0,97 0,81 0,06 0,86 0,86 0,82 0,88 0,94 0,97 0,86 0,94 0,94 0,97 1,00

Figure 6: SuccessRate for Reusing the Test Cases of each Test

Variant (Columns) on all Configurations (Rows)

setup and reset did not work for four configuration pairs (C07-09,

C07-10, C08-09, and C08-10) when running our experiments. We

were able to run the setup for these variants in at least one order so

we were able to retrieve the data for the experiment, but we had to

manually reset the virtual machine image of Bugzilla to re-establish

the default configuration.

Figure 7 depicts the SuccessRate for executing the original vari-

ants on the 105 pairwise configurations. We executed the two vari-

ants corresponding to the two combined configurations. Subse-

quently, we classified them in the best and the worst of the two

variants and printed them sorted by the WorstSuccessRate . More-

over, we depict the quantiles for 25%, 50%, and 75% of the entire

SuccessRate data.

For the majority of the 105 configurations none of the original

test variants could be applied successfully (74 times). In 30 cases,

we were able to reuse one test variant completely and in one case

(C01-13) both of them worked.

0 20 40 60 80 10
0

0

0.2

0.4

0.6

0.8

1

25%

50%
75%

Pairwise configuration

S
u
cc
es
sR
a
te

BestSuccessRate WorstSuccessRate

Figure 7: SuccessRate of Original Variants on Pairwise Com-

binations

5.3 Automatic Reuse by Composing New Tests

Next, we generated the pairwise test variants using ECCO for each

of the 105 pairwise configurations. It took 33.1 seconds to extract the

mapping information from the 16 initial variants and 49.3 seconds

to generate all 105 new variants. We used a system with an Intel

i7-3610QM CPU @2.3 GHz and 16GB of RAM. Four out of these

105 variants resulted in a compiler error and could therefore not

be executed (T04-05, T04-09, T09-11, and T09-12). These errors

occurred at positions where the AST merge lead to merge conflicts

that ECCO can not automatically decide. For instance, when two

different return statements appear at the end of a method or when

the same variable is defined in a method twice due to the merge.

We executed the tests for the remaining 101 variants and computed

our metrics. The order of the setup did not affect the results of the

tests generated by ECCO.

Figure 8 shows the number of test cases part of the 101 working

ECCO generated variants. They range from 33 to 38 test cases,

whereas the number of test cases for the original variants only

ranged from 33 to 36 test cases. These results can be expected

as ECCO merged test cases from two different variants into one

variant.

ECCO

33 34 35 36 37 38

Tests
T
y
p
e Type

ECCO

Figure 8: Number of Test Cases (Tests) in the ECCO Variants

Figure 9 depicts the SuccessRate of the 101 working generated

ECCO variants on the pairwise configurations. We observed a very

high SuccessRate for the ECCO generated test variants. In fact, in 92

of the 101 variants all tests passed successfully (i.e. SuccessRate =

1.0), which is also why all the quantiles are at 1.0.

0 20 40 60 80 10
0

0.2

0.4

0.6

0.8

1
25%, 50%, 75%

Pairwise configuration

S
u
cc
es
sR
a
te

ECCOSuccessRate

Figure 9: SuccessRate of ECCO Variants on Pairwise Combi-

nations

We compared these results with the ones from using the original

variants on the pairwise combinations. Table 2 shows the number

of times that our with ECCO generated tests could all be executed

successfully compared to when executing the original test variants

on the pair-wise configurations. We can see that for the majority

of the 101 configurations none of the original test variants could

be applied successfully (70 times). In contrast, the ECCO generated

test variants passed successfully for 67 of these 70 configurations.

In 30 cases it was possible to reuse one test variant completely, and



SPLC ’19, September 9ś13, 2019, Paris, France Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

Original Variants

Successful Total

None One Both

ECCO Pair Success 67 24 1 92

Variants Fail 3 6 0 9

Total 70 30 1 101

Table 2: Contingency Table of Successfully Passing Tests for

ECCO Variants vs. Original Variants

in only one configuration we were able to apply both original test

variants.

For some configurations our results showed a very low

SuccessRate , as we can see in the outliers at the start in Figure 9.

Moreover, Table 2 shows that for three configurations none of the

variants worked without problems. These three configurations are

also the ones where our ECCO variants performed the worst in

terms of the SuccessRate . The worst case in the ECCO SuccessRate

stems from configuration C05-10 (i.e. the combination of C05 and

C10), with a SuccessRate of only 19.4%. We found that C05 changes

the process for many tested use cases of Bugzilla and, therefore,

most tests failed in the pairwise combinations containing C05 and

in the direct reuse results shown in Figure 6. Nonetheless, the ECCO

variants for combinations with C05 worked without a problem. The

combination with C10 seems to work specifically poorly, because

it also requires a comment on all bug status changes that the tests

from T05 do not include.

The next configuration that did not work with any variants and

which resulted in the second worst SuccessRate for the generated

ECCO variant was C07-08. However, we expected conflicts for the

combination of these configurations, as discussed in Section 4.1.

The third and final configuration that each applied variant en-

countered problems on was C07-11. Test from T07 failed because

C11 requires a comment on bug resolution change that is not imple-

mented in the tests, and T11 failed because C07 restricts the Bugzilla

workflow and bug status values that are possible and therefore bugs

have another status then expected by the tests.

Other interesting results were for combinations that we actually

expected conflicts. For instance, we found that for the combination

of C09 and C10 we indeed found a conflict when applying the tests

generated with ECCO (i.e. 1 failed test in T09). However, the tests

of T10 worked on the combination without a problem, because

C10 requires comments on all bug status changes including the one

required by C09. Moreover, we expected conflicts for configurations

C07-14 and C07-15, but found the ECCO tests worked without

problems, because the status changes tested for duplications still

worked in the minimal workflow configuration. In contrast, all

original variants encountered some problems during testing, like

T07 that expected a different status for bug duplicates and the rest

did not work on the minimal workflow. Finally, we also expected a

conflict for combining C14 and C15 and indeed found that we can

not configure both of them at the same time, because they configure

the same configuration option. Hence, the ECCO test variant did not

work and which one of the original variants that worked depended

on the order of configuration (i.e. for the configuration that was

configured last the tests in the corresponding variant worked).

5.4 Automatic Reuse of Setup Code

Next, we performed the experiment againwith the setup code gener-

ated by ECCO. For most configurations and test variants the results

did not change compared to the previous experiment above. The

four variants that could not setup/reset the configuration correctly

also could not reset Bugzilla to the default configuration with the

ECCO generated setup code. Therefore, we had to stop the virtual

machine running Bugzilla and reset the image manually, before

continuing the experiments in the same way we did in the previous

experiment.

When further investigating the differences in our results we

found two configurations that behaved slightly different with the

ECCO setup. The most severe differences in the results occurred

in variant T07-08 that already confirmed our expected conflicts

in the previous experiment. However, with the ECCO setup the

results are even worse and each variant caused 32 errors out of 34

test cases, which translates to a SuccessRate of 5.9%. The second

configuration for which we found differences in our test results was

C09-10 where variant T09-10 caused one error in the previous ex-

periment. Surprisingly, variant T09-10 works without any problem

when we used the ECCO setup to establish configuration C09-10.

We investigated why this is the case and found that the setup code

in variant T09 is a subset of the code in T10, and therefore the

merged variant T09-10 had the equal setup code as T10. This is

also why tests from T10 work on configuration C09. Finally, for

configurations C14-15 we found in the previous experiment that

the order of the setup mattered for the test outcomes, and therefore

the results for this experiment matched only the results of the setup

order that matched the order that ECCO generated.

6 DISCUSSION

In this section we discuss the implications of the results on our

research questions.

RQ1: To what degree can tests from configurations be

reused directly? In our first experiment we found that some test

variants work without any failures or errors on other configura-

tions (see Figure 6). This was the case because some configurations

enabled a subset of configuration options on other configurations,

like C09 where a comment is only required in a subset of the cases

of C10 and therefore the tests of C10 (i.e. T10) also work on C09. For

other configurations (i.e. C04 and C05) we found that only some of

the basic tests worked and most others failed, because these config-

urations change many aspects of the main use cases of Bugzilla that

even involve new Web pages that the other tests were not designed

to interact with. However, the majority of the remaining variants

could execute between 67% and 97% of their test cases on other

configurations without problems.

The second experiment showed that the direct reuse works in

31 of the 105 configurations for at least one variant. However, this

leaves the majority of test variants to be adapted in terms of fixing

failing tests, which requires considerable manual effort.

RQ2: To what degree can we automatically generate test

suites for new configurations from existing tests? Our results

suggest that ECCO is useful for automatically generating new test

variants. The data of our automatic reuse experiment showed a

significantly higher SuccessRate for test variants generated with



Automating Test Reuse for Highly Configurable Software SPLC ’19, September 9ś13, 2019, Paris, France

ECCO compared to directly reusing existing variants on the new

configurations. We measured an average SuccessRate of 98,72% for

tests we generated with ECCO, compared to a SuccessRate of 81,84%

for using the two original test variants. Even if we always select the

original variants with the highest SuccessRate for every pairwise

configuration, the average SuccessRate would be less (95.8%). How-

ever, the information required to make this selection for a specific

configuration options is unknown before execution. If we would

instead always choose the worse of the two variants, the average

SuccessRate drops to 67.9%.

Figure 10 depicts the rates in which tests cases were success-

ful for the generated tests (i.e. ECCO), and for the two variants

testing the two configurations that were merged. We can see that

the test variants generated with ECCO have a significantly higher

SuccessRate than any of the other variants. For 31 configurations

we were able to successfully execute an existing test variant of the

previous configurations, which means 32 initial variants could be

applied (since for one configuration we could reuse both variants

fully). We confirmed the statistical significance of the results using

the Wilcoxon-Rank-sum test (p-value:2.2 exp(−16)) [16]. Addition-

ally, we computed the effect size measure Â12 : 0.886, which means

our generated test variants lead to a higher SuccessRate than the

original two variants in 88.6% of the cases.

●● ● ● ●●● ●●

● ●● ●● ●●●●●●●●●● ●●● ●●●●●●●Original

ECCO

0.25 0.50 0.75 1.00

SuccessRate

T
y
p
e

Type

ECCO

Original

Figure 10: SuccessRate of ECCO Tests vs. Original Tests

Figure 11 depicts theOverallCoveraдe for the different test vari-

ants. We found that generally the ECCO tests have higher coverage

in most cases and, therefore, they executed more of the code of

our page objects. However, since ECCO merges code from original

variants we would expect the generated variants to contain more

code to execute than the original variants.

●●

● ●● ●● ●●●●●●●●●● ●●● ●●●●●●●Original

ECCO

0.1 0.2 0.3 0.4 0.5 0.6

OverallCoverage

T
y
p
e

Type

ECCO

Original

Figure 11: OverallCoveraдe of ECCO Tests vs. Original Tests

Finally, we investigated the relations between SuccessRate and

OverallCoveraдe of our results. To do this we classified the results

depending on the ECCO variants results compared to the results for

the metrics of other variants. In Table 3 we show the contingency

table of this comparison. We can see that for 34 configurations

the ECCO variants were best in both metrics. Moreover, for the

configurations in which the ECCO variants SuccessRate was equal

to or worse than for other variants, the ECCO variant still had the

highest OverallCoveraдe in the majority of cases.

OverallCoveraдe
Total

ECCO ECCO+1 ECCO+2 ECCO-1 ECCO-2

SuccessRate

ECCO 34 20 0 12 1 67
ECCO+1 18 4 0 2 0 24
ECCO+2 1 0 0 0 0 1
ECCO-1 6 0 2 1 0 9
ECCO-2 0 0 0 0 0 0

Total 59 24 2 15 1 101

ECCO: ECCO results were the best,
ECCO+X: ECCO results were equally best with 1 or 2 other variants,

ECCO-X: ECCO results were worse than 1 or 2 other variants

Table 3: Contingency Table SuccessRate vs. OverallCoveraдe

These results support the general usefulness of ECCO to au-

tomatically generate new test variants. Moreover, we found that

ECCO can also be used to generate the test setup code of our test

variants. Reducing the effort for reusing existing test code for new

configurations is beneficial for testing highly configurable software.

Furthermore, ECCO could be used for refactoring tests when mov-

ing variants that were developed using clone-and-own to a platform

for systematic reuse.

6.1 Limitations

In our experiments we only measured the rate in which test cases

succeeded and the code coverage. We did not have any fault data,

so we were not able to investigate if the tests would actually be

able to discover faults in the system. To further study the useful-

ness of an automated reuse approach for tests and to evaluate the

generated test quality, measuring the fault detection capabilities is

the next logical step. However, for now this has to remain an item

on our future work agenda. Nonetheless, demonstrating that we

can generate working test variants for new configurations is an

important step into the direction of automated test reuse.

Another limitation of our work we want to point out is that we

only generate test variants for configurations which are pairwise

combinations of previously tested configurations. We do not gen-

erate test suites for entirely new configurations. With ECCO we

can automatically reuse tests by mapping configuration options to

test code that already exists, but the approach cannot be used to

generate entirely new test code.

6.2 Threats to Validity

External validity: Our study only includes one configurable sys-

tem. Studies on more systems are required to determine the degree

to which results may be generalized. However, the system that

we used is well known and should be representative for this type

of configurable systems. A possible source for bias might be the

configuration options we selected to use in our experiment. This

choice was based on selecting arbitrary options from the Bugzilla

configuration pages that have an observable impact on the user

interface. Another possible source for bias might be that the tests

were also created by the authors. We developed the tests for the



SPLC ’19, September 9ś13, 2019, Paris, France Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

default configuration and then for the other 15 configurations using

a clone-and-own process, all before the experiments. We did not

alter the tests at all for our experiments, so they are more realistic

and even led to compiler errors in four of the variants generated

by ECCO.

Internal validity: We required several tools to perform the

experiments and for data analysis. Errors in these tools might bias

our results. To reduce this possibility, we validated all used tools

and our code on smaller examples and subsets of the data. Another

possible source for bias might come from the automatic setup of

the configurations. To reduce this possibility, we randomly checked

the configurations in Bugzilla and ensured it was configured as

intended. Furthermore, we performed the experiments on pairwise

configurations with the setup in both orders and with the setup

generated by ECCO. To proof the applicability of ECCO for our test

code we used it to reconstruct the original variants. Hence, we used

all 16 variants as input for ECCO and regenerate all of them. We

compared the Abstract Syntax Tree (AST) of the original variants

with ECCO’s reconstruction of the variants and found no difference.

Moreover, we executed all the tests on the reconstructed variants

like in our first direct reuse experiment and compared the results

and found no difference in the test results. Similarly, we found no

difference in the coverage data we recorded. These results confirm

the basic usefulness of ECCO for our experiment and showed that

it successfully can identify parts specific to configuration options

from the initial variants.

Construct validity: We measured test success and code cover-

age on the Java page objects. Instead of only measuring which tests

run without problem it would also be interesting to test for faults

in the system and compare which tests are able to detect faults in

different configurations. However, we did not have any faults for

our system and were also not able to perform mutation testing on

the virtual machine that runs the tested system. Moreover, we mea-

sured the code coverage only on the Java page objects, because we

could not measure coverage within the virtual machine. We argue

that the coverage of the page objects is likely to correlate with the

coverage of the corresponding Bugzilla page, but this might be a

source for bias in our results.

7 RELATED WORK

Cohen et al. performed an experiment to show the effect of exe-

cuting tests for different configurations of a highly configurable

system [3]. They found small differences in fault detection and code

coverage across configurations. This experiment is similar to our

first experiment for direct reuse, were we also found that many test

cases still worked on different configurations. However, we did not

have fault data available, nor could we inject mutants like Cohen et

al. did in their experiments, which is a limitation of our work. The

main difference of this work and the work from Cohen et al. is that

our main goal was to assess our capabilities to automatically gener-

ate new variants to test combinations of previous configurations,

which was out of the scope of the experiments of Cohen et al.

Ramler et al. reported their experience for automatically reusing

tests across configurations and versions to increase code cover-

age [15]. They were able to increase coverage by directly reusing

test cases from other configurations. We found similar results in our

first experiment for direct reuse that showed that we can reuse some

test cases for one configuration on other configurations without

problems. Additionally, we performed experiments for automati-

cally generating new test variants.

As we have mentioned before, Krüger et al. discuss the need

for automatic refactoring of tests to reduce barriers of moving

from variants developed with a clone-and-own process to a more

systematic SPL platform [12]. They discuss challenges linked to

such a refactoring and outline their own ideas for such a refactoring

approach. Our experiments support the usefulness of using ECCO

for reusing tests and we argue that with ECCO we can address

several of the challenges discussed by Krüger et al.

8 CONCLUSIONS AND FUTUREWORK

In this paper we performed experiments on the reusability across

configurations of a highly configurable software system. Further-

more, we used an approach for automatic reuse to generate tests for

new configurations by reusing previously developed test variants.

Our experiments showed that for most configurations a large pro-

portion of around 70% to, in some cases, 100% of tests cases could

be applied to other configurations without problems. The main goal

of our study was to assess the usefulness of automatically gener-

ated test variants, for which we found an average success rate of

98.7%, compared to 81.8% when directly reusing previous variants.

These results suggest a considerable advantage of our approach to

automatically generate tests over the direct reuse approach, which

requires additional manual effort for adapting the failing tests.

However, more experiments are required to confirm these find-

ings. In our future work, first, we plan to use also other configurable

systems to replicate our results. Ideally, these systems would have

fault data available or allow to use mutation testing, so we could

also assess the fault detection capabilities of different test variants.

Additionally, we would be interested in performing further exper-

iments with new configurations and other variants (e.g. 3-wise

combinations). Finally, we plan to investigate if we can use the re-

sults from testing different configuration combinations to infer the

existence of unknown interactions among configuration options.

ACKNOWLEDGMENTS

The research reported in this paper has been supported by the

Austrian Ministry for Transport, Innovation and Technology, the

Federal Ministry for Digital and Economic Affairs, and the Province

of Upper Austria in the frame of the COMET center SCCH, grant

no. FFG-865891. Furthermore, this research was in part funded by

the JKU Linz Institute of Technology (LIT) by the state of Upper

Austria, grant no. LIT-2016-2-SEE-019.

REFERENCES
[1] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,

Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
feature?: a qualitative study of features in industrial software product lines. In
Proceedings of the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, July 20-24, 2015, Douglas C. Schmidt (Ed.). ACM, 16ś25.
https://doi.org/10.1145/2791060.2791108

[2] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. Software Eng. 39, 12 (2013), 1611ś1640. https:
//doi.org/10.1109/TSE.2013.34

https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/TSE.2013.34


Automating Test Reuse for Highly Configurable Software SPLC ’19, September 9ś13, 2019, Paris, France

[3] Myra B. Cohen, Joshua Snyder, and Gregg Rothermel. 2006. Testing across
configurations: implications for combinatorial testing. ACM SIGSOFT Software
Engineering Notes 31, 6 (2006), 1ś9. https://doi.org/10.1145/1218776.1218785

[4] Paulo Anselmo daMota Silveira Neto, Ivan do CarmoMachado, JohnD.McGregor,
Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. 2011. A
systematic mapping study of software product lines testing. Information &
Software Technology 53, 5 (2011), 407ś423.

[5] Ivan do Carmo Machado, John D. McGregor, Yguaratã Cerqueira Cavalcanti, and
Eduardo Santana de Almeida. 2014. On strategies for testing software product
lines: A systematic literature review. Information & Software Technology 56, 10
(2014), 1183ś1199.

[6] Ivan do Carmo Machado, John D. McGregor, and Eduardo Santana de Almeida.
2012. Strategies for testing products in software product lines. ACM SIGSOFT
Software Engineering Notes 37, 6 (2012), 1ś8.

[7] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In 17th European Conference on Software Maintenance
and Reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013, Anthony Cleve,
Filippo Ricca, and Maura Cerioli (Eds.). IEEE Computer Society, 25ś34. https:
//doi.org/10.1109/CSMR.2013.13

[8] Emelie Engström and Per Runeson. 2011. Software product line testing - A
systematic mapping study. Information & Software Technology 53, 1 (2011), 2ś13.

[9] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Computer
Society, 391ś400. https://doi.org/10.1109/ICSME.2014.61

[10] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander
Egyed. 2015. The ECCO Tool: Extraction and Composition for Clone-and-
Own. In 37th IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 2, Antonia Bertolino, Gerardo
Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 665ś668.
https://doi.org/10.1109/ICSE.2015.218

[11] Charles W. Krueger. 2006. New methods in software product line practice. Com-
mun. ACM 49, 12 (2006), 37ś40. https://doi.org/10.1145/1183236.1183262

[12] Jacob Krüger, Mustafa Al-Hajjaji, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2018. Towards automated test refactoring for software product lines. In
Proceeedings of the 22nd International Systems and Software Product Line Confer-
ence - Volume 1, SPLC 2018, Gothenburg, Sweden, September 10-14, 2018, Thorsten
Berger, Paulo Borba, Goetz Botterweck, Tomi Männistö, David Benavides, Sarah
Nadi, Timo Kehrer, Rick Rabiser, Christoph Elsner, and Mukelabai Mukelabai
(Eds.). ACM, 143ś148. https://doi.org/10.1145/3233027.3233040

[13] Roberto Erick Lopez-Herrejon, Stefan Fischer, Rudolf Ramler, and Alexander
Egyed. 2015. A first systematic mapping study on combinatorial interaction
testing for software product lines. In Eighth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2015 Workshops, Graz, Austria,
April 13-17, 2015. IEEE Computer Society, 1ś10. https://doi.org/10.1109/ICSTW.
2015.7107435

[14] Mukelabai Mukelabai, Damir Nesic, Salome Maro, Thorsten Berger, and Jan-
Philipp Steghöfer. 2018. Tackling combinatorial explosion: a study of indus-
trial needs and practices for analyzing highly configurable systems. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, Mari-
anne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM, 155ś166.
https://doi.org/10.1145/3238147.3238201

[15] Rudolf Ramler and Werner Putschögl. 2013. Reusing Automated Regression
Tests for Multiple Variants of a Software Product Line. In Sixth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2013 Workshops
Proceedings, Luxembourg, Luxembourg, March 18-22, 2013. IEEE Computer Society,
122ś123. https://doi.org/10.1109/ICSTW.2013.21

[16] David J. Sheskin. 2007. Handbook of Parametric and Nonparametric Statistical
Procedures (4 ed.). Chapman & Hall/CRC.

[17] Mats Skoglund and Per Runeson. 2004. A case study on regression test suite main-
tenance in system evolution. In 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings. IEEE, 438ś442.

https://doi.org/10.1145/1218776.1218785
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1145/1183236.1183262
https://doi.org/10.1145/3233027.3233040
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1109/ICSTW.2013.21

	Abstract
	1 Introduction
	2 Background
	2.1 Highly Configurable Systems
	2.2 ECCO
	2.3 Configurable Software Testing

	3 Problem statement
	4 Experiment Design
	4.1 System Under Test
	4.2 Composing New Test Variants
	4.3 Experiment Execution
	4.4 Metrics

	5 Results
	5.1 Direct Reuse of Existing Tests on Other Configurations
	5.2 Direct Reuse of Existing Tests on New Pairwise Configurations
	5.3 Automatic Reuse by Composing New Tests
	5.4 Automatic Reuse of Setup Code

	6 Discussion
	6.1 Limitations
	6.2 Threats to Validity

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

