Automating Test Reuse for Highly Configurable Software

An Experiment

Stefan Fischer
Institute for Software Systems Engineering
Johannes Kepler University
Linz, Austria
stefan.fischer@jku.at

Lukas Linsbauer
Institute for Software Systems Engineering
Johannes Kepler University
Linz, Austria
lukas.linsbauer@jku.at

ABSTRACT

Dealing with highly configurable systems is generally very complex.
Hundreds of different analysis techniques have been conceived to
deal with different aspects of configurable systems. One large focal
point is the testing of configurable software. This is challenging
due to the large number of possible configurations and because
tests themselves are rarely configurable and instead built for spe-
cific configurations. Existing tests can usually not be reused on
other configurations. Therefore, tests need to be adapted for the
specific configuration they are supposed to test. In this paper we
report on an experiment about reusing tests in a configurable sys-
tem. We used manually developed tests for specific configurations
of Bugzilla and investigated which of them could be reused for
other configurations. Moreover, we automatically generated new
test variants (by automatically reusing from existing ones) for com-
binations of previous configurations. Our results showed that we
can directly reuse some tests for configurations which they were
not intended for. Nonetheless, our automatically generated test
variants generally yielded better results. When applying original
tests to new configurations we found an average success rate for
the tests of 81,84%. In contrast, our generated test variants achieved
an average success rate of 98,72%. This is an increase of 16,88%.

CCS CONCEPTS

- Software and its engineering — Software product lines;
Software testing and debugging.

KEYWORDS

variability, configurable software, clone-and-own, reuse, testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC ’19, September 9-13, 2019, Paris, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7138-4/19/09...$15.00
https://doi.org/10.1145/3336294.3336305

Rudolf Ramler
Software Competence Center Hagenberg GmbH
Hagenberg, Austria
rudolf.ramler@scch.at

Alexander Egyed
Institute for Software Systems Engineering
Johannes Kepler University
Linz, Austria
alexander.egyed@jku.at

ACM Reference Format:

Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed. 2019.
Automating Test Reuse for Highly Configurable Software: An Experiment.
In 23rd International Systems and Software Product Line Conference - Volume
A (SPLC °19), September 9-13, 2019, Paris, France. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3336294.3336305

1 INTRODUCTION

Companies develop configurable software systems to deal with the
growing demand for custom tailored software products. A range of
techniques have been devised for the development and maintenance
of configurable software. Many large scale configurable systems,
with thousands of configuration options, have been engineered. For
instance, the Linux kernel has several thousands of configuration
options, like supporting a wide range of different hardware from
hand held devices (e.g. Android phones) to large supercomputer
clusters [2].

A large number of configuration options means that there are
often myriads of configurations that can be derived from the system.
This variability is challenging for many tasks when working with
configurable software. Not only do all the configuration options
have to be considered in the development process, but also potential
interactions between them. Broadly speaking, an interaction occurs
when one configuration option changes the behavior associated
with other options. When testing a configurable system, combi-
nations of configuration options are of particular interest, as they
may reveal undesired interactions. However, not all combinations
can be tested, because the number of possible combinations usually
increases exponentially with every configuration option. Krueger
et al. discussed that already a system with more than 216 Boolean,
non-constrained configuration options has a number of possible
configurations comparable to the number of estimated atoms in the
universe [11]. To handle this combinatorial explosion, commonly
only subsets of possible configurations are selected for testing. For
instance, Combinatorial Interaction Testing (CIT) selects configura-
tions that cover combinations of n configuration options (therefore,
often referred to as n-wise testing). A problem that still exists is that
the tests for the system are themselves often not configurable [14].
In odrder to test different configurations, the existing tests must be
adapted for each specific configuration.

https://doi.org/10.1145/3336294.3336305
https://doi.org/10.1145/3336294.3336305

SPLC 19, September 9-13, 2019, Paris, France

The goal of this work is to investigate the possibility of reusing
existing tests related to one configuration for another configura-
tion in the context of a highly configurable software system. Our
experiments are based on the widely used bug tracking system
Bugzilla, which provides a large number of configuration options
and can be adjusted to user needs in various ways. We implemented
test variants for several different Bugzilla configurations by copy-
ing and adapting the tests from previous configurations. Such a
clone-and-own approach is often used in practice for developing
and extending related software systems [7]. Moreover, we used an
automated reuse approach to generate new test variants for addi-
tional configurations that combine previously tested configuration
options.

Automating the reuse of tests for configurable software can
substantially reduce the effort for testing and it supports a more
rigorous testing process. Kriiger et al. discussed the need for auto-
mated test refactoring for the adoption of more systematic reuse
approaches [12]. Thus, we applied ECCO (Extraction and Compo-
sition for Clone-and-Own) for automatically generating new tests
from existing ones written for other configurations. ECCO is an
approach for enhancing clone-and-own to systematically develop
and maintain software variants [9]. We were able to show that the
reuse support of ECCO is effective for automatically generating
new test variants for the pairwise combination of configuration
options. The approach produced 3565 executable test cases, which
yielded better results than simply reusing the tests of the combined
configurations in 66.34% of the new pairwise configurations and it
was equally successful in 24.75%.

The remainder of this paper is structured as follows. Section 2 in-
troduces the relevant background and Section 3 discusses the prob-
lems we aim to address and motivates our experiments. Section 4
presents the system of our study and the experiments performed
with it, as well as the metrics recorded during the experiments.
Sections 5 and 6 summarize the results of our experiments and dis-
cuss their implications on our research questions. Finally, Section 7
describes related work to our study and Section 8 summarizes the
conclusions of our study and sketches our future work.

2 BACKGROUND

In this section, we discuss some of the necessary background for
our work. We describe highly configurable systems, an automatic
approach for reuse, and existing approaches for testing configurable
software systems.

2.1 Highly Configurable Systems

Systems frequently offer configuration options to allow users to
tailor them to their needs and preferences. These configuration
options (a.k.a. features [1]) have different types of how they are
expressed (e.g. Boolean options, Integers, ...) and can be realized
in different forms in the system. For instance, using preprocessor
directives (e.g. #IFDEFs), conditional execution (e.g. simple IFs), or
build systems [14]. A large number of highly configurable systems
are being maintained, ranging from just a few to thousands of
configuration options (e.g. Linux kernel).

A wealth of research on highly configurable software is available
in the field of Software Product Line Engineering (SPLE). Software

Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

product lines (SPLs) are families of related software systems distin-
guished by the set of configuration options (i.e. features) each one
provides. SPLs are highly structured and they follow strict processes
to deal with the contained variability. The available configuration
options and dependencies between them are commonly expressed
in a variability model.

Because SPLs typically entail a high upfront investment many
practitioners use a more ad hoc approach of copying and adapting
previous variants, known as clone-and-own [7]. However, this leads
to a set of similar variants that have to be maintained separately,
which becomes more difficult, the more variants being developed.

2.2 ECCO

In an effort to mitigate the problems associated with clone-and-own,
we developed an approach called ECCO (Extraction and Composi-
tion for Clone-and-Own) [9, 10]. Its purpose is to support reuse in a
clone-and-own context by analyzing commonalities and differences
in existing variants and, subsequently, support the creation of new
variants by automatically reusing relevant parts from existing vari-
ants. In a first step it extracts traceability information (i.e. mappings
between configuration options and their implementation). The sec-
ond step then allows to compose new variants by combining the
relevant parts of the implementation using the extracted mapping
information. In this paper we apply ECCO specifically for creating
new variants of tests. First, we extract mappings between the differ-
ent parts of the test source code and the configuration options that
are tested by the analyzed tests. The test source code is analyzed
at the level of the Abstract Syntax Tree (AST), which means that
each individual element of a source code statement is considered.
Then we compose new test variants by simply selecting a set of
configuration options that shall be tested. The Abstract Syntax Tree
(AST) of the new tests is automatically created as a combination
of the relevant parts of the ASTs of the existing tests. Finally, the
developer can manually adjust or extend the newly created variants
if necessary, e.g., when the combination of existing source code
parts is not sufficient to fully express new behavior of the system
due to interactions or conflicts between configuration options. In
context of testing, the newly generated test will likely fail when
executed for the first time, indicating an unexpected and potentially
erroneous interaction between configuration options.

Figure 1 shows the simplified ECCO workflow. Input is a set of
existing variants. Each variant consists of its implementation and
the information of which configuration options it encompasses.
The extraction operation analyzes commonalities and differences
in configuration options and the implementation of the variants,
computes traceability information, and stores it in a repository.
The composition operation then uses the information stored in the
repository to compute the implementation of new variants given a
set of desired configuration options.

2.3 Configurable Software Testing

There exists a substantial amount of research focusing on testing
configurable software [4-6, 8]. A common thread among this re-
search is the task to select variants for testing that are more likely
to contain faulty interactions causing failures. The most prominent
approaches use Combinatorial Interaction Testing (CIT) [13]. CIT

Automating Test Reuse for Highly Configurable Software

Variant

A 4

Configuration Options
& Implementation

SPLC 19, September 9-13, 2019, Paris, France

New

Composition .
P Variant

Implementation

€0,C1,C:
Configuration Options

Figure 1: Simplified ECCO Workflow

techniques applied to configurable systems commonly use a variabil-
ity model from which they calculate all valid t-wise configuration-
option-combinations and, subsequently, covering arrays of a strength
t. For instance, for t = 2, also known as pairwise testing, a CIT al-
gorithm has to find a set of variants (i.e. covering array) to cover

all combinations of two configuration option values that can be

selected and which are allowed by the variability model.

3 PROBLEM STATEMENT

As discussed above, to test a highly configurable software system
a subset of configurations has to be selected for testing. To test
different configurations the tests also have to be adapted to these
configurations. One solution to achieve this would be to develop
the tests also as configurable software, so they can be automatically
adjusted to the configurations they are supposed to test. However,
in practice this is often not the case [14] as developing such tests
would substantially raise development costs. Therefore, tests for
a new configuration are usually created via cloning and manually
adapting existing tests developed previously for a similar configura-
tion. Following this process, practitioners end up with a set of test
variants (i.e., partial clones), each to test a specific configuration.

However, covering all possible interactions that can occur in
a configurable system is typically infeasible with such a manual
process. Even only testing all pairwise combinations can quickly
become infeasible due to combinatorics, when the tests have to
be manually adapted for each configuration - not to mention the
fact that these tests also have to be maintained throughout the
evolution of the system [17]. In practice, testing is therefore usu-
ally focused on individual configurations (configuration options in
isolation) and a few selected combinations. The limited coverage
of combinations can lead to missing critical erroneous interactions
between different configuration options. An approach to automati-
cally generate tests for new configurations would help to reduce
the effort of implementing and maintaining tests for a wide range
of combinations and to find new interaction bugs. Given that the
number of combinations is typically growing exponentially, the
potential gain from using an automated approach can be huge in
many projects.

Moreover, companies often use a clone-and-own process for
developing new variants for their configurable system [7]. These
variants are tested individually before deployment to the customers.
Tests are reused from previous variants and are also adapted in a
clone-and-own manner [12]. There are many benefits for migrating
from clone-and-own to a more systematic approach on a reusable
platform, like reduction in maintenance costs. A barrier preventing

such a migration is often the fear of introducing new bugs during
the migration [12]. Being able to automatically reuse tests from
previous variants could help with this issue and it would allow to
ensure that the system still behaves as expected after migration.
These practical problems motivated us to investigate systematic
and automated reuse for software tests of configurable systems and
to perform the experiments discussed in this paper. In particular
we aim to answer the following research questions:
RQ1: To what degree can tests from configurations be reused
directly? We analyze how many of the existing tests can be directly
applied for testing other configurations and in how many cases
modifications are required. Hence, this question allows us to assess
the manual effort that would be required to adapt existing tests for
different configurations.
RQ2: To what degree can we automatically generate test suites
for new configurations from existing tests? The main goal of
our experiments is to determine whether we can automatically
compose test variants for new, previously untested configurations
by reusing parts of the source code of existing tests. Therefore
we investigate the use of the ECCO tool support for automatically
composing such tests.

4 EXPERIMENT DESIGN

In this section, we discuss the methodology of our experiment. We
start with explaining the system under test and the existing tests
we have developed, followed by the setup used for our experiments,
and the metrics measured during these experiments.

4.1 System Under Test

The configurable system we used in our experiments is the widely
used, open-source bug tracker Bugzilla. Specifically, we used the
Virtual Bugzilla Server (version 3.4) provided by ALM Works!. This
is an virtual machine image containing a ready-to-use setup of
the Bugzilla 3.4 Web application, an Apache Web server, and a
MySQL database running on Debian Linux. Bugzilla is a Web-based
application, so the front-end (user interface) of the Bugzilla server
is accessed using a Web browser.

We initially implemented a suite of 34 automated test cases exer-
cising the main functionality of Bugzilla via the Web front-end (e.g.,
submitting a bug report, searching and updating a report, changing
the bug status). The tests are written in Java and use Selenium?
to control the Chrome Web browser to interact with Bugzilla. The
tests run on the default configuration of Bugzilla. Subsequently,

!https://almworks.com/archive/vbs
https://www.seleniumhq.org/

https://almworks.com/archive/vbs
https://www.seleniumhq.org/

SPLC 19, September 9-13, 2019, Paris, France

we identified a range of different configuration options that can
be used to change the default behavior of Bugzilla. We selected a
diverse set of fifteen different options resulting in configuration
changes that are directly observable in the Web front-end, in the
navigation structure, or in the bug tracking workflow of Bugzilla.
Thus, these options can be expected to impact our existing set of
tests and make adaptations necessary in order to run them after
a configuration change. Furthermore, some of the configuration
options are expected to result in conflicts when activated in combi-
nation. We created tests for each of the additional configurations by
manually performing clone-and-own starting from the test cases
for the default configuration.

Config Tests Description

C00 34 Default configuration of Bugzilla

Co1 36 Enable status white board field for optional comments

Co02 34 Disable priority selection on bug report submission

Co3 33 Allow using empty values in bug search form

Co4 35 Add an additional product to organize bug reports

Co05 36 Add an additional component to a product

Co06 36 Add an additional version to a product

Co7 34 Configure bug status workflow to a minimum set of states
Co8 34 Configure bug status workflow to a different entry state
Co9 35 Require descriptions on creating a new bug entry

C10 34 Require descriptions on all bug status changes

C11 35 Require resolution description on setting a bug to resolved
C12 35 Enforce a comment when a bug is marked as duplicate
C13 35 Enforce dependencies to be resolved before bug can be fixed
C14 34 Set the default bug status of duplicates to verified

C15 34 Set the default bug status of duplicates to closed

Table 1: Configurations and Number of Tests

We list the 16 configurations of Bugzilla used in our experi-
ments in Table 1 along with the number of test cases developed
in each of the variants and a description of the impact of chang-
ing a specific configuration option. The changes in the different
configurations range from simply adding an optional comment
field (C01) to completely changing the bug workflow and the states
that can be assigned to a bug (C07 and C08). Some of these con-
figuration options are related to the same functionality and we
therefore expect conflicts if they are set simultaneously with one
another. For instance, C07 and C08 both change the bug workflow
and therefore they cannot both be configured at the same time.
Configuration C12 can only be used when duplicates are allowed.
A conflicting dependency also exists between configurations C14
and C15, because they both change the default status of duplicates
to different states and therefore, they cannot be set simultaneously.
Furthermore, we might run into another conflict if any of the two
is activated together with C07, because they change a bug status
that might no longer be allowed in C07.

Each of the test suite variants that were developed to test a
specific configuration consists of a (1) Test Set Up that configures
the Bugzilla server accordingly (i.e. activates the configuration and
resets it to the default configuration after the tests were executed),
(2) Test Cases that exercise the functionality of Bugzilla in various
ways, and (3) Page Objects that use Selenium to access Bugzilla
through its Web front-end. Figure 2 sketches the test execution
cycle of one of the test variants targeting a specific configuration.
All of the parts are implemented in Java and each test variant is an

Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

independent Maven® project that has been created by cloning and
modifying the tests for the default configuration (C00). We use the
tool Maven Invoker? to automatically execute all test variants. As
depicted in Figure 2, we first call the Test Set Up to set Bugzilla to the
desired configuration. Next, we use the JUnit test runner to execute
the Test Cases, which call methods provided by the Page Objects.
These are Java objects that use Selenium to interact with the Web
pages realizing the Bugzilla front-end and to verify the expected
outcome. Finally, we use the Test Set Up to reset the configuration
back to its default in order to provide a clean basis for running
other test variants using the same process.

Maven Test Set Test Cases Page Objects Bugzilla
Up
Maven ’ ’ '
() o) [memet) - (s, [t (roeen) (o |
Java:setUp (& selenium
JUnit:test 1 L [selenium
l [—————————————— | [Selenium
_____________)y —" _ _ _ _1______ o
JUnit:test 2
JUnit:test n L L g selenium
Java:reset lT‘ (& selenium
L e A N * ______ LJ ‘ T

Figure 2: Sequence of Executing a Test Variant

4.2 Composing New Test Variants

We applied ECCO to create new test variants from existing tests. We
generated the tests for new configurations that are combinations of
configuration options covered individually by the existing tests. We
did not adjust ECCO for this experiment. It was used as described
in Section 2.2 on the existing test variants along with the covered
configuration options as input.

Figure 3 shows code snippets of three different manually devel-
oped test variants, testing the configurations C00, C01, and C06
respectively. The configuration CO00 is the variant testing the de-
fault configuration of Bugzilla. Configuration C01 adds an optional
text field for commenting on the status of a bug, that is accessed in
Line 24 in test variant T01. Although test T00 was written for the de-
fault configuration C00 it can still run successfully on C01, because
the text field is optional and not accessed by the test. Test T01 can
not successfully run on configuration C00 and will cause an error
in Line 24, since the text field does not exist in this configuration.

Configuration C06 adds another product version to the Bugzilla
default configuration, which then overrides the default selection
of the version labeled unspecified. All test variants assert that the
version of the created bug entry is unspecified (Lines 9, 22, and 38
respectively). However, if we execute the tests T00 or T01 on con-
figuration C06 we would get a failure from this assertion, because
the default version has been overridden and the new version is
selected instead. The test variant T06 was therefore adapted by
adding Line 33 that explicitly sets the version to unspecified.

3https://maven.apache.org/
“https://maven.apache.org/shared/maven-invoker/

https://maven.apache.org/
https://maven.apache.org/shared/maven-invoker/

Automating Test Reuse for Highly Configurable Software

Variant T0O (BASE):

SPLC 19, September 9-13, 2019, Paris, France

Variant T01-06 (BASE + USESTATUSWHITEBOARD + ADDVERSION):

1 class CreateNewBugTest {

2 public void testCreateBugDefaultValues() {

3 -

4 createBug.setSummary (summary) ;

5 BugCreatedPage created=createBug.commitBug();

6 L

7 EditBugPage editBug=created.gotoCreatedBugPage();
8 assertEquals (summary, editBug.getSummary());

9 assertEquals("unspecified",editBug.getVersion());
10

11 }

12 3

Variant TO1 (BASE + USESTATUSWHITEBOARD):

14 class CreateNewBugTest {
15 public void testCreateBugDefaultValues() {

17 createBug.setSummary (summary);

18 BugCreatedPage created=createBug.commitBug();

19 S

20 EditBugPage editBug=created.gotoCreatedBugPage();
21 assertEquals (summary, editBug.getSummary());

22 assertEquals("unspecified",editBug.getVersion());
23 S

24 assertEquals("",editBug.getStatusWhiteboard());
25 -

26 3

27 }

Variant T06 (BASE + ADDVERSION):

29 class CreateNewBugTest {
30 public void testCreateBugDefaultValues() {

32 createBug.setSummary (summary);

33 createBug.setVersion("unspecified");

34 BugCreatedPage created=createBug.commitBug();

35 L

36 EditBugPage editBug=created.gotoCreatedBugPage();
37 assertEquals (summary, editBug.getSummary());

38 assertEquals("unspecified",editBug.getVersion());
39 e

40 }

41 3}

Figure 3: Source Code Snippets of Bugzilla Tests

We used the test variant for the default configuration C00 and the
different variants created for the additional fifteen configurations
C01-C15 as input for ECCO. Furthermore, we also provided the
configuration option tested by each of the variants to allow ECCO
to establish links between configuration options and the related
source code parts of the tests. Based on the extracted knowledge,
ECCO generates the source code of the tests for a new configuration,
which is specified in terms of the activated configuration options.

Figure 4 shows code snippets of a test generated with ECCO
for the combination of the configurations C01 and C06. This new
test variant contains the code for the optional status text field in
Line 53 and for setting the added bug version in Line 46. Therefore,
this new test can be executed on the combined configuration with
USESTATUSWHITEBOARD and ADDVERSION activated. In contrast, the
tests T00 and T01 would fail on this combination due to the change
caused by the added version. Test T06 would still pass, but it does
not assert that the optional status text field has been activated. The
test variant generated with ECCO also executes the assertion for

the optional text field and therefore achieves higher code coverage.

42 class CreateNewBugTest {

43 public void testCreateBugDefaultValues() {

44 -

45 createBug.setSummary (summary) ;

46 createBug.setVersion("unspecified");

47 BugCreatedPage created=createBug.commitBug();

48 L

49 EditBugPage editBug=created.gotoCreatedBugPage();
50 assertEquals (summary, editBug.getSummary());

51 assertEquals("unspecified", editBug.getVersion());
52 L

53 assertEquals("",editBug.getStatusWhiteboard());
54

55 }

56 3}

Figure 4: Source Code Snippets of Composed Test

4.3 Experiment Execution

We performed several different experiments to answer our research
questions stated above.

Direct reuse of existing tests on other configurations: To an-
swer RQ1, we investigated how many of the existing tests of the
original variants could be direly reused for testing other configura-
tions. We first executed all tests on the individual configuration they
were created for to ensure they work correctly. Then we executed
each of the tests also on all other configurations to find out how
much the individual configurations influence the test runs. From
the results we analyzed to what degree the tests are influenced by
the different configurations.

Direct reuse of existing tests on new pairwise configurations:
We created new configurations by building pairwise combinations
of existing configurations, i.e., by activating the Bugzill options
related to two individual configurations simultaneously. Then, we
executed the tests for each of the two configurations to evaluate the
reuse of the existing tests on these new pairwise configurations. To
activate the configuration options in Bugzilla, we used the existing
setup code from both of the involved test variants and executed
them in sequence, so both options would be set. In order to mitigate
the possibility that the setup of the first configuration influences the
other one (e.g., one masking the other and corrupting the outcome),
we performed the experiment twice and changed the order in which
the two setups were executed. This allowed us to asses to what
degree the original variants can be directly reused on pairwise
configurations.

Automated reuse by composing new tests: To address RQ2, we
also executed newly composed tests on the pairwise combinations
of existing configurations. We applied ECCO to generate new test
variants for all possible combinations of any two existing configu-
rations. The goal of this experiment was to assess the usefulness
of automatically composing new tests from existing tests for new
configurations. Figure 5 illustrates the experiment on pairwise con-
figurations for the example of testing configuration C01-06. The
pairwise configuration C01-06 represents the combination of the
individual configurations C01 and C06. Instead of testing this new
configuration with the exsiting tests T01 (developed for the config-
uration C01) and T06 (developed for C06), Please note that ECCO is

SPLC 19, September 9-13, 2019, Paris, France

deterministic and therefore we only had to perform this experiment
once.

Direct reuse of Bugzilla
existing tests on Variant TO1 Configuration
new pairwise C01-06
configurations
Variant T06

Automated reuse
by composing
new tests

Variant TO1-06

Figure 5: Example Experiments on Pairwise Configurations

Automatic reuse of setup code: We can use ECCO not only to
generate test code for the new configurations but also for generat-
ing the setup and reset code to configure Bugzilla accordingly. In
the previous experiment, we executed the setup of each individual
configuration in sequence to activate all required configuration
options. To investigate if the ECCO approach is also applicable for
composing setup code, we repeated the previous experiment, using
the ECCO generated setup and reset code instead of the original
ones. We compared the results to those from the previous experi-
ment in order to assess how well the ECCO setup code worked.
All test variants used in the experiments, original ones as well
as those generated with ECCO, were realized as separate Maven
projects. We used the Maven Surefire Plugin® to generate test re-
ports and the JaCoCo® Maven Plugin to record code coverage.

4.4 Metrics

Next, we will discuss the metrics we recorded for our experiments.
From the test reports we can extract the first set of metrics.
Test Result Metrics.

e Number of Test Cases Tests. The number of test cases that
exists for a variant.

e Number of Successful Tests Succ. The number of test
cases that were executed in a variant without any problem
(i.e. no failures or errors).

e Test Success Rate SuccessRate. The rate in which test cases
could be executed without problem (i.e. no failures or errors).

SuccessRate = Succ/Tests

Furthermore, as the existing tests may still pass but yield less
coverage than the composed ones, we also analyze and compare
the coverage achieved by the tests. However, we were not able
to measure the actual coverage of the Bugzilla code. Instead, we
measured the coverage of the Java code for the page objects of
the executed variants. Our reasoning for doing this was that each
page object represents an actual page of Bugzilla, and the code
that was executed uses parts of the page. Therefore, we argue that
coverage of the page object should logically be correlated with
the coverage of Bugzilla itself. The coverage report from JaCoCo
includes lines, methods, and classes that have been executed during

Shttps://maven.apache.org/surefire/maven-surefire- plugin/
Shttps://www.eclemma.org/jacoco/

Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

testing. However, the line coverage metric is influenced by the
formatting (i.e. a statement can be in one line or split into several
lines). Because ECCO may format some statements different than
they were in the original variants we computed statement coverage
instead, which allows a better comparison. We did this by iterating
over the Abstract Syntax Tree (AST) (generated with the Eclipse
Java development tools (JDT)) and checking the JaCoCo report for
each statement if the corresponding line was executed. Moreover,
from this AST we computed the number of statements that exist in
each variant and over all variants combined.
Coverage Metrics.

e Number of Statements FullCount. The number of unique
statements that exist combined over all variants.

e Number of executed Statements VarCovered. The num-
ber of statements that have been executed when testing a
variant.

o Statement Coverage on all code OverallCoverage. Cov-
erage of statements in an individual variant in relation to all
statements of all variants.

OverallCoverage = VarCovered/FullCount

Therefore, OverallCoverage is the proportion of Bugzilla
that we can access with our page objects and which is exe-
cuted during testing.

5 RESULTS

In this section, we present the results of our experiments.

5.1 Direct Reuse of Existing Tests on Other
Configurations

First, we executed all test variants on all configurations. In Figure 6
we depict the SuccessRate at which test cases from existing test
suite variants (columns) could be applied to existing configurations
(rows). As is expected, the diagonal is filled with the values 1.0,
meaning 100% of the test cases could be applied to the configura-
tions they were developed for. Moreover, some variants can apply
all their test cases to some other configurations, for example tests
from C10 (i.e. T10) can be applied to six configurations besides C10
itself. Most of the variants can run a fairly high number of their
test cases on other configurations (between 70% and 90%). The ex-
ception for this are the configurations C04 and C05, on which only
the most basic tests from other configurations could be executed.
Similarly, the test suite for configuration C04 (i.e. T04) could not
run many of its tests on other configurations than C04 itself.

5.2 Direct Reuse of Existing Tests on New
Pairwise Configurations

Next, we executed the tests on pairwise configurations. There are
105 possible pairs in total ((125) = 105). The order in which we
executed the setup made no difference for the results of most of
the configurations. For configuration C14-15 we found a difference
in the SuccessRate depending on the order, due to the expected
conflict between the two configurations. The SuccessRates did an
exact flip with the order in which the configurations was set up and
we included the results, because there was effectively no difference
in the numbers. Furthermore, we also discovered that the combined

https://maven.apache.org/surefire/maven-surefire-plugin/
https://www.eclemma.org/jacoco/

Automating Test Reuse for Highly Configurable Software

T00] T01[102 T03 [T04[T05 [T06 [TO7 [TO8] TO9 [T10[T11 [T12[T13[T24 [T15
coo | 1,00] 0,81] 1,00] 0,84]0,06] 0,89] 0,89] 0,85[0,91] 0,97 1,00[0,89 0,97 0,97 0,97 0,97
co1 | 1,00 1,00] 1,00] 0,84] 0,06 0,89] 0,89] 0,85[0,91] 0,97] 1,00[0,89] 0,97] 0,97] 0,97] 0,97
c02 | 0,97] 0,78] 1,00] 0,81]0,06] 0,89] 0,89] 0,82[0,91] 0,94 0,97[0,86] 0,94] 0,94] 0,94] 0,94
co3 | 0,94] 0,75 0,94] 1,00] 0,06] 0,83 0,83] 0,79] 0,85] 0,91] 0,94] 0,83] 0,91] 0,91] 0,91] 0,91
co04 | 0,06] 0,06] 0,06 0,06] 1,00] 0,06 0,06] 0,06[0,06[0,06[0,06[0,06] 0,06] 0,06] 0,06] 0,06]
co5 | 0,12] 0,11] 0,12] 0,12] 0,06 1,00[0,11] 0,12[0,12 0,11] 0,12[0,11] 0,11] 0,11] 0,12 0,12]
co6 | 0,94] 0,78 0,94] 0,78]0,06] 0,89] 1,00[0,79] 0,91] 0,91] 0,94] 0,83 0,91] 0,91] 0,91] 0,91
co07 | 0,74] 0,67 0,74] 0,69]0,06] 0,67] 0,67[1,00] 0,71] 0,71] 0,74[0,71] 0,71] 0,74 0,71] 0,72
cos | 0,82] 0,69] 0,82] 0,69]0,06] 0,78 0,81] 0,85]1,00] 0,80] 0,82] 0,80] 0,80] 0,80] 0,79] 0,79
c09 [0,97] 0,81]0,97] 0,81]0,06] 0,89] 0,89] 0,82] 0,91]1,00{'1,00] 0,86] 0,94] 0,94] 0,94 0,94
c10 | 0,74 0,69] 0,74] 0,69] 0,06 0,67] 0,67] 0,74] 0,71] 0,77]1,00] 0,69] 0,74] 0,71] 0,74] 0,74
c11 | 0,94 0,75] 0,94 0,78]0,06] 0,83 0,83] 0,85 0,85] 0,91 1,00[1,00] 0,91] 0,94] 0,91] 0,91
c12 |0,97] 0,78]0,97] 0,81]0,06] 0,36 0,86] 0,82] 0,88] 0,94 1,00] 0,86/ 1,00] 0,94 0,97 0,97
c13 |1,00] 0,81/1,00] 0,84] 0,06 0,89] 0,89] 0,85] 0,91] 0,97] 1,00] 0,89] 0,97 1,00] 0,97] 0,97
c14 |0,97] 0,78/0,97] 0,81]0,06] 0,86 0,86 0,82] 0,88] 0,94] 0,97 0,86| 0,94] 0,94] 1,00] 0,97
c15 |0,97] 0,78/0,97] 0,81]0,06] 0,86 0,86 0,82] 0,88] 0,94 0,97] 0,86] 0,94] 0,94 0,97] 1,00

Figure 6: SuccessRate for Reusing the Test Cases of each Test
Variant (Columns) on all Configurations (Rows)

setup and reset did not work for four configuration pairs (C07-09,
C07-10, C08-09, and C08-10) when running our experiments. We
were able to run the setup for these variants in at least one order so
we were able to retrieve the data for the experiment, but we had to
manually reset the virtual machine image of Bugzilla to re-establish
the default configuration.

Figure 7 depicts the SuccessRate for executing the original vari-
ants on the 105 pairwise configurations. We executed the two vari-
ants corresponding to the two combined configurations. Subse-
quently, we classified them in the best and the worst of the two
variants and printed them sorted by the WorstSuccessRate. More-
over, we depict the quantiles for 25%, 50%, and 75% of the entire
SuccessRate data.

For the majority of the 105 configurations none of the original
test variants could be applied successfully (74 times). In 30 cases,
we were able to reuse one test variant completely and in one case
(C01-13) both of them worked.

1 |- oz
0.8 |- =
© 0.6 [|
3
54 0.4 -
o
3
S 0.2 - -
S
“ [V : } L . B =
(=] (=] S (=] (=3 (=]
N AN O 0 S
Pairwise configuration
BestSuccessRate —— WorstSuccessRate

Figure 7: SuccessRate of Original Variants on Pairwise Com-
binations

5.3 Automatic Reuse by Composing New Tests

Next, we generated the pairwise test variants using ECCO for each
of the 105 pairwise configurations. It took 33.1 seconds to extract the
mapping information from the 16 initial variants and 49.3 seconds
to generate all 105 new variants. We used a system with an Intel

SPLC 19, September 9-13, 2019, Paris, France

i7-3610QM CPU @2.3 GHz and 16GB of RAM. Four out of these
105 variants resulted in a compiler error and could therefore not
be executed (T04-05, T04-09, T09-11, and T09-12). These errors
occurred at positions where the AST merge lead to merge conflicts
that ECCO can not automatically decide. For instance, when two
different return statements appear at the end of a method or when
the same variable is defined in a method twice due to the merge.
We executed the tests for the remaining 101 variants and computed
our metrics. The order of the setup did not affect the results of the
tests generated by ECCO.

Figure 8 shows the number of test cases part of the 101 working
ECCO generated variants. They range from 33 to 38 test cases,
whereas the number of test cases for the original variants only
ranged from 33 to 36 test cases. These results can be expected
as ECCO merged test cases from two different variants into one
variant.

Type
ECCO- — - - ECCO

33 34 35 36 37 38
Tests

Type

Figure 8: Number of Test Cases (Tests) in the ECCO Variants

Figure 9 depicts the SuccessRate of the 101 working generated
ECCO variants on the pairwise configurations. We observed a very
high SuccessRate for the ECCO generated test variants. In fact, in 92
of the 101 variants all tests passed successfully (i.e. SuccessRate =
1.0), which is also why all the quantiles are at 1.0.

1 | S ~
0.8 |- -
W
g 0.6 |~ -
&
2 0.4 - -
S
& 02 ‘ ‘ ‘ ‘]
< o = o = =
Q F o o =

Pairwise configuration

ECCOSuccessRate

Figure 9: SuccessRate of ECCO Variants on Pairwise Combi-
nations

We compared these results with the ones from using the original
variants on the pairwise combinations. Table 2 shows the number
of times that our with ECCO generated tests could all be executed
successfully compared to when executing the original test variants
on the pair-wise configurations. We can see that for the majority
of the 101 configurations none of the original test variants could
be applied successfully (70 times). In contrast, the ECCO generated
test variants passed successfully for 67 of these 70 configurations.
In 30 cases it was possible to reuse one test variant completely, and

SPLC 19, September 9-13, 2019, Paris, France

Original Variants
Successful Total
None | One | Both
ECCO Pair | Success 67 24 1 92
Variants Fail 3 6 0 9

Total 70 30 1 101
Table 2: Contingency Table of Successfully Passing Tests for
ECCO Variants vs. Original Variants

in only one configuration we were able to apply both original test
variants.

For some configurations our results showed a very low
SuccessRate, as we can see in the outliers at the start in Figure 9.
Moreover, Table 2 shows that for three configurations none of the
variants worked without problems. These three configurations are
also the ones where our ECCO variants performed the worst in
terms of the SuccessRate. The worst case in the ECCO SuccessRate
stems from configuration C05-10 (i.e. the combination of C05 and
C10), with a SuccessRate of only 19.4%. We found that C05 changes
the process for many tested use cases of Bugzilla and, therefore,
most tests failed in the pairwise combinations containing C05 and
in the direct reuse results shown in Figure 6. Nonetheless, the ECCO
variants for combinations with C05 worked without a problem. The
combination with C10 seems to work specifically poorly, because
it also requires a comment on all bug status changes that the tests
from T05 do not include.

The next configuration that did not work with any variants and
which resulted in the second worst SuccessRate for the generated
ECCO variant was C07-08. However, we expected conflicts for the
combination of these configurations, as discussed in Section 4.1.

The third and final configuration that each applied variant en-
countered problems on was C07-11. Test from T07 failed because
C11 requires a comment on bug resolution change that is not imple-
mented in the tests, and T11 failed because C07 restricts the Bugzilla
workflow and bug status values that are possible and therefore bugs
have another status then expected by the tests.

Other interesting results were for combinations that we actually
expected conflicts. For instance, we found that for the combination
of C09 and C10 we indeed found a conflict when applying the tests
generated with ECCO (i.e. 1 failed test in T09). However, the tests
of T10 worked on the combination without a problem, because
C10 requires comments on all bug status changes including the one
required by C09. Moreover, we expected conflicts for configurations
C07-14 and C07-15, but found the ECCO tests worked without
problems, because the status changes tested for duplications still
worked in the minimal workflow configuration. In contrast, all
original variants encountered some problems during testing, like
TO07 that expected a different status for bug duplicates and the rest
did not work on the minimal workflow. Finally, we also expected a
conflict for combining C14 and C15 and indeed found that we can
not configure both of them at the same time, because they configure
the same configuration option. Hence, the ECCO test variant did not
work and which one of the original variants that worked depended
on the order of configuration (i.e. for the configuration that was
configured last the tests in the corresponding variant worked).

Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

5.4 Automatic Reuse of Setup Code

Next, we performed the experiment again with the setup code gener-
ated by ECCO. For most configurations and test variants the results
did not change compared to the previous experiment above. The
four variants that could not setup/reset the configuration correctly
also could not reset Bugzilla to the default configuration with the
ECCO generated setup code. Therefore, we had to stop the virtual
machine running Bugzilla and reset the image manually, before
continuing the experiments in the same way we did in the previous
experiment.

When further investigating the differences in our results we
found two configurations that behaved slightly different with the
ECCO setup. The most severe differences in the results occurred
in variant T07-08 that already confirmed our expected conflicts
in the previous experiment. However, with the ECCO setup the
results are even worse and each variant caused 32 errors out of 34
test cases, which translates to a SuccessRate of 5.9%. The second
configuration for which we found differences in our test results was
C09-10 where variant T09-10 caused one error in the previous ex-
periment. Surprisingly, variant T09-10 works without any problem
when we used the ECCO setup to establish configuration C09-10.
We investigated why this is the case and found that the setup code
in variant T09 is a subset of the code in T10, and therefore the
merged variant T09-10 had the equal setup code as T10. This is
also why tests from T10 work on configuration C09. Finally, for
configurations C14-15 we found in the previous experiment that
the order of the setup mattered for the test outcomes, and therefore
the results for this experiment matched only the results of the setup
order that matched the order that ECCO generated.

6 DISCUSSION

In this section we discuss the implications of the results on our
research questions.

RQ1: To what degree can tests from configurations be
reused directly? In our first experiment we found that some test
variants work without any failures or errors on other configura-
tions (see Figure 6). This was the case because some configurations
enabled a subset of configuration options on other configurations,
like C09 where a comment is only required in a subset of the cases
of C10 and therefore the tests of C10 (i.e. T10) also work on C09. For
other configurations (i.e. C04 and C05) we found that only some of
the basic tests worked and most others failed, because these config-
urations change many aspects of the main use cases of Bugzilla that
even involve new Web pages that the other tests were not designed
to interact with. However, the majority of the remaining variants
could execute between 67% and 97% of their test cases on other
configurations without problems.

The second experiment showed that the direct reuse works in
31 of the 105 configurations for at least one variant. However, this
leaves the majority of test variants to be adapted in terms of fixing
failing tests, which requires considerable manual effort.

RQ2: To what degree can we automatically generate test
suites for new configurations from existing tests? Our results
suggest that ECCO is useful for automatically generating new test
variants. The data of our automatic reuse experiment showed a
significantly higher SuccessRate for test variants generated with

Automating Test Reuse for Highly Configurable Software

ECCO compared to directly reusing existing variants on the new
configurations. We measured an average SuccessRate of 98,72% for
tests we generated with ECCO, compared to a SuccessRate of 81,84%
for using the two original test variants. Even if we always select the
original variants with the highest SuccessRate for every pairwise
configuration, the average SuccessRate would be less (95.8%). How-
ever, the information required to make this selection for a specific
configuration options is unknown before execution. If we would
instead always choose the worse of the two variants, the average
SuccessRate drops to 67.9%.

Figure 10 depicts the rates in which tests cases were success-
ful for the generated tests (i.e. ECCO), and for the two variants
testing the two configurations that were merged. We can see that
the test variants generated with ECCO have a significantly higher
SuccessRate than any of the other variants. For 31 configurations
we were able to successfully execute an existing test variant of the
previous configurations, which means 32 initial variants could be
applied (since for one configuration we could reuse both variants
fully). We confirmed the statistical significance of the results using
the Wilcoxon-Rank-sum test (p-value:2.2 exp(—16)) [16]. Addition-
ally, we computed the effect size measure Alz : 0.886, which means
our generated test variants lead to a higher SuccessRate than the
original two variants in 88.6% of the cases.

ECCO- 3 oo "l Type

Type

Original - ® ®@e

0.25 0.50 0.75 1.00
SuccessRate

Figure 10: SuccessRate of ECCO Tests vs. Original Tests

Figure 11 depicts the OverallCoverage for the different test vari-
ants. We found that generally the ECCO tests have higher coverage
in most cases and, therefore, they executed more of the code of
our page objects. However, since ECCO merges code from original
variants we would expect the generated variants to contain more
code to execute than the original variants.

ECCO- . ._I Type
)
S B8 Ecco
Original - @) 1 $ Original

0.1 0.2 03 0.4 05 06
OverallCoverage

Figure 11: OverallCoverage of ECCO Tests vs. Original Tests

Finally, we investigated the relations between SuccessRate and
OverallCoverage of our results. To do this we classified the results
depending on the ECCO variants results compared to the results for

SPLC 19, September 9-13, 2019, Paris, France

the metrics of other variants. In Table 3 we show the contingency
table of this comparison. We can see that for 34 configurations
the ECCO variants were best in both metrics. Moreover, for the
configurations in which the ECCO variants SuccessRate was equal
to or worse than for other variants, the ECCO variant still had the
highest OverallCoverage in the majority of cases.

OwvwerallCoverage Total
ECCO | ECCO+1 | ECCO+2 | ECCO-1 | ECCO-2

ECCO 34 20 0 12 1 67

ECCO+1 18 4 0 2 0 24

SuccessRate [ECCO+2 1 0 0 0 0 1
ECCO-1 6 0 2 1 0 9

ECCO-2 0 0 0 0 0 0

Total 59 24 2 15 1 101

ECCO: ECCO results were the best,
ECCO+X: ECCO results were equally best with 1 or 2 other variants,
ECCO-X: ECCO results were worse than 1 or 2 other variants

Table 3: Contingency Table SuccessRate vs. OverallCoverage

These results support the general usefulness of ECCO to au-
tomatically generate new test variants. Moreover, we found that
ECCO can also be used to generate the test setup code of our test
variants. Reducing the effort for reusing existing test code for new
configurations is beneficial for testing highly configurable software.
Furthermore, ECCO could be used for refactoring tests when mov-
ing variants that were developed using clone-and-own to a platform
for systematic reuse.

6.1 Limitations

In our experiments we only measured the rate in which test cases
succeeded and the code coverage. We did not have any fault data,
so we were not able to investigate if the tests would actually be
able to discover faults in the system. To further study the useful-
ness of an automated reuse approach for tests and to evaluate the
generated test quality, measuring the fault detection capabilities is
the next logical step. However, for now this has to remain an item
on our future work agenda. Nonetheless, demonstrating that we
can generate working test variants for new configurations is an
important step into the direction of automated test reuse.

Another limitation of our work we want to point out is that we
only generate test variants for configurations which are pairwise
combinations of previously tested configurations. We do not gen-
erate test suites for entirely new configurations. With ECCO we
can automatically reuse tests by mapping configuration options to
test code that already exists, but the approach cannot be used to
generate entirely new test code.

6.2 Threats to Validity

External validity: Our study only includes one configurable sys-
tem. Studies on more systems are required to determine the degree
to which results may be generalized. However, the system that
we used is well known and should be representative for this type
of configurable systems. A possible source for bias might be the
configuration options we selected to use in our experiment. This
choice was based on selecting arbitrary options from the Bugzilla
configuration pages that have an observable impact on the user
interface. Another possible source for bias might be that the tests
were also created by the authors. We developed the tests for the

SPLC 19, September 9-13, 2019, Paris, France

default configuration and then for the other 15 configurations using
a clone-and-own process, all before the experiments. We did not
alter the tests at all for our experiments, so they are more realistic
and even led to compiler errors in four of the variants generated
by ECCO.

Internal validity: We required several tools to perform the
experiments and for data analysis. Errors in these tools might bias
our results. To reduce this possibility, we validated all used tools
and our code on smaller examples and subsets of the data. Another
possible source for bias might come from the automatic setup of
the configurations. To reduce this possibility, we randomly checked
the configurations in Bugzilla and ensured it was configured as
intended. Furthermore, we performed the experiments on pairwise
configurations with the setup in both orders and with the setup
generated by ECCO. To proof the applicability of ECCO for our test
code we used it to reconstruct the original variants. Hence, we used
all 16 variants as input for ECCO and regenerate all of them. We
compared the Abstract Syntax Tree (AST) of the original variants
with ECCO’s reconstruction of the variants and found no difference.
Moreover, we executed all the tests on the reconstructed variants
like in our first direct reuse experiment and compared the results
and found no difference in the test results. Similarly, we found no
difference in the coverage data we recorded. These results confirm
the basic usefulness of ECCO for our experiment and showed that
it successfully can identify parts specific to configuration options
from the initial variants.

Construct validity: We measured test success and code cover-
age on the Java page objects. Instead of only measuring which tests
run without problem it would also be interesting to test for faults
in the system and compare which tests are able to detect faults in
different configurations. However, we did not have any faults for
our system and were also not able to perform mutation testing on
the virtual machine that runs the tested system. Moreover, we mea-
sured the code coverage only on the Java page objects, because we
could not measure coverage within the virtual machine. We argue
that the coverage of the page objects is likely to correlate with the
coverage of the corresponding Bugzilla page, but this might be a
source for bias in our results.

7 RELATED WORK

Cohen et al. performed an experiment to show the effect of exe-
cuting tests for different configurations of a highly configurable
system [3]. They found small differences in fault detection and code
coverage across configurations. This experiment is similar to our
first experiment for direct reuse, were we also found that many test
cases still worked on different configurations. However, we did not
have fault data available, nor could we inject mutants like Cohen et
al. did in their experiments, which is a limitation of our work. The
main difference of this work and the work from Cohen et al. is that
our main goal was to assess our capabilities to automatically gener-
ate new variants to test combinations of previous configurations,
which was out of the scope of the experiments of Cohen et al.
Ramler et al. reported their experience for automatically reusing
tests across configurations and versions to increase code cover-
age [15]. They were able to increase coverage by directly reusing
test cases from other configurations. We found similar results in our

Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed

first experiment for direct reuse that showed that we can reuse some
test cases for one configuration on other configurations without
problems. Additionally, we performed experiments for automati-
cally generating new test variants.

As we have mentioned before, Kriiger et al. discuss the need
for automatic refactoring of tests to reduce barriers of moving
from variants developed with a clone-and-own process to a more
systematic SPL platform [12]. They discuss challenges linked to
such a refactoring and outline their own ideas for such a refactoring
approach. Our experiments support the usefulness of using ECCO
for reusing tests and we argue that with ECCO we can address
several of the challenges discussed by Kriiger et al.

8 CONCLUSIONS AND FUTURE WORK

In this paper we performed experiments on the reusability across
configurations of a highly configurable software system. Further-
more, we used an approach for automatic reuse to generate tests for
new configurations by reusing previously developed test variants.
Our experiments showed that for most configurations a large pro-
portion of around 70% to, in some cases, 100% of tests cases could
be applied to other configurations without problems. The main goal
of our study was to assess the usefulness of automatically gener-
ated test variants, for which we found an average success rate of
98.7%, compared to 81.8% when directly reusing previous variants.
These results suggest a considerable advantage of our approach to
automatically generate tests over the direct reuse approach, which
requires additional manual effort for adapting the failing tests.
However, more experiments are required to confirm these find-
ings. In our future work, first, we plan to use also other configurable
systems to replicate our results. Ideally, these systems would have
fault data available or allow to use mutation testing, so we could
also assess the fault detection capabilities of different test variants.
Additionally, we would be interested in performing further exper-
iments with new configurations and other variants (e.g. 3-wise
combinations). Finally, we plan to investigate if we can use the re-
sults from testing different configuration combinations to infer the
existence of unknown interactions among configuration options.

ACKNOWLEDGMENTS

The research reported in this paper has been supported by the
Austrian Ministry for Transport, Innovation and Technology, the
Federal Ministry for Digital and Economic Affairs, and the Province
of Upper Austria in the frame of the COMET center SCCH, grant
no. FFG-865891. Furthermore, this research was in part funded by
the JKU Linz Institute of Technology (LIT) by the state of Upper
Austria, grant no. LIT-2016-2-SEE-019.

REFERENCES

[1] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Griinbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
feature?: a qualitative study of features in industrial software product lines. In
Proceedings of the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, July 20-24, 2015, Douglas C. Schmidt (Ed.). ACM, 16-25.
https://doi.org/10.1145/2791060.2791108

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Trans. Software Eng. 39, 12 (2013), 1611-1640. https:
//doi.org/10.1109/TSE.2013.34

[2

https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/TSE.2013.34

Automating Test Reuse for Highly Configurable Software SPLC ’19, September 9-13, 2019, Paris, France

[3] Myra B. Cohen, Joshua Snyder, and Gregg Rothermel. 2006. Testing across
configurations: implications for combinatorial testing. ACM SIGSOFT Software
Engineering Notes 31, 6 (2006), 1-9. https://doi.org/10.1145/1218776.1218785

[4] Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, John D. McGregor,
Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. 2011. A

[11] Charles W. Krueger. 2006. New methods in software product line practice. Com-
mun. ACM 49, 12 (2006), 37-40. https://doi.org/10.1145/1183236.1183262

[12] Jacob Kriiger, Mustafa Al-Hajjaji, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2018. Towards automated test refactoring for software product lines. In
Proceeedings of the 22nd International Systems and Software Product Line Confer-

= =

systematic mapping study of software product lines testing. Information &
Software Technology 53, 5 (2011), 407-423.

Ivan do Carmo Machado, John D. McGregor, Yguarata Cerqueira Cavalcanti, and
Eduardo Santana de Almeida. 2014. On strategies for testing software product
lines: A systematic literature review. Information & Software Technology 56, 10
(2014), 1183-1199.

Ivan do Carmo Machado, John D. McGregor, and Eduardo Santana de Almeida.
2012. Strategies for testing products in software product lines. ACM SIGSOFT
Software Engineering Notes 37, 6 (2012), 1-8.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in Industrial
Software Product Lines. In 17th European Conference on Software Maintenance
and Reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013, Anthony Cleve,
Filippo Ricca, and Maura Cerioli (Eds.). IEEE Computer Society, 25-34. https:
//doi.org/10.1109/CSMR.2013.13

Emelie Engstrom and Per Runeson. 2011. Software product line testing - A
systematic mapping study. Information & Software Technology 53, 1 (2011), 2-13.
Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Computer
Society, 391-400. https://doi.org/10.1109/ICSME.2014.61

Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander
Egyed. 2015. The ECCO Tool: Extraction and Composition for Clone-and-
Own. In 37th IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 2, Antonia Bertolino, Gerardo
Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 665-668.
https://doi.org/10.1109/ICSE.2015.218

ence - Volume 1, SPLC 2018, Gothenburg, Sweden, September 10-14, 2018, Thorsten
Berger, Paulo Borba, Goetz Botterweck, Tomi Ménnistd, David Benavides, Sarah
Nadi, Timo Kehrer, Rick Rabiser, Christoph Elsner, and Mukelabai Mukelabai
(Eds.). ACM, 143-148. https://doi.org/10.1145/3233027.3233040

Roberto Erick Lopez-Herrejon, Stefan Fischer, Rudolf Ramler, and Alexander
Egyed. 2015. A first systematic mapping study on combinatorial interaction
testing for software product lines. In Eighth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2015 Workshops, Graz, Austria,
April 13-17, 2015. IEEE Computer Society, 1-10. https://doi.org/10.1109/ICSTW.
2015.7107435

Mukelabai Mukelabai, Damir Nesic, Salome Maro, Thorsten Berger, and Jan-
Philipp Steghéfer. 2018. Tackling combinatorial explosion: a study of indus-
trial needs and practices for analyzing highly configurable systems. In Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, Mari-
anne Huchard, Christian Késtner, and Gordon Fraser (Eds.). ACM, 155-166.
https://doi.org/10.1145/3238147.3238201

Rudolf Ramler and Werner Putschégl. 2013. Reusing Automated Regression
Tests for Multiple Variants of a Software Product Line. In Sixth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2013 Workshops
Proceedings, Luxembourg, Luxembourg, March 18-22, 2013. IEEE Computer Society,
122-123. https://doi.org/10.1109/ICSTW.2013.21

David J. Sheskin. 2007. Handbook of Parametric and Nonparametric Statistical
Procedures (4 ed.). Chapman & Hall/CRC.

Mats Skoglund and Per Runeson. 2004. A case study on regression test suite main-
tenance in system evolution. In 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings. IEEE, 438-442.

https://doi.org/10.1145/1218776.1218785
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1145/1183236.1183262
https://doi.org/10.1145/3233027.3233040
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1109/ICSTW.2013.21

	Abstract
	1 Introduction
	2 Background
	2.1 Highly Configurable Systems
	2.2 ECCO
	2.3 Configurable Software Testing

	3 Problem statement
	4 Experiment Design
	4.1 System Under Test
	4.2 Composing New Test Variants
	4.3 Experiment Execution
	4.4 Metrics

	5 Results
	5.1 Direct Reuse of Existing Tests on Other Configurations
	5.2 Direct Reuse of Existing Tests on New Pairwise Configurations
	5.3 Automatic Reuse by Composing New Tests
	5.4 Automatic Reuse of Setup Code

	6 Discussion
	6.1 Limitations
	6.2 Threats to Validity

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

